Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
FASEB J ; 29(9): 3876-88, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26062602

RESUMEN

Several acute monogenic diseases affect multiple body systems, causing death in childhood. The development of novel therapies for such conditions is challenging. However, improvements in gene delivery technology mean that gene therapy has the potential to treat such disorders. We evaluated the ability of the AAV9 vector to mediate systemic gene delivery after intravenous administration to perinatal mice and late-gestation nonhuman primates (NHPs). Titer-matched single-stranded (ss) and self-complementary (sc) AAV9 carrying the green fluorescent protein (GFP) reporter gene were intravenously administered to fetal and neonatal mice, with noninjected age-matched mice used as the control. Extensive GFP expression was observed in organs throughout the body, with the epithelial and muscle cells being particularly well transduced. ssAAV9 carrying the WPRE sequence mediated significantly more gene expression than its sc counterpart, which lacked the woodchuck hepatitis virus posttranscriptional regulatory element (WPRE) sequence. To examine a realistic scale-up to larger models or potentially patients for such an approach, AAV9 was intravenously administered to late-gestation NHPs by using a clinically relevant protocol. Widespread systemic gene expression was measured throughout the body, with cellular tropisms similar to those observed in the mouse studies and no observable adverse events. This study confirms that AAV9 can safely mediate systemic gene delivery in small and large animal models and supports its potential use in clinical systemic gene therapy protocols.


Asunto(s)
Dependovirus , Feto , Vectores Genéticos , Proteínas Fluorescentes Verdes , Transducción Genética/métodos , Tropismo Viral , Animales , Femenino , Feto/citología , Feto/embriología , Feto/metabolismo , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Vectores Genéticos/farmacología , Proteínas Fluorescentes Verdes/biosíntesis , Proteínas Fluorescentes Verdes/genética , Haplorrinos , Ratones , Embarazo
2.
J Neurosci ; 34(39): 13077-82, 2014 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-25253854

RESUMEN

Infantile neuronal ceroid lipofuscinosis (INCL) is an inherited neurodegenerative lysosomal storage disease (LSD) caused by a deficiency in palmitoyl protein thioesterase-1 (PPT1). Studies in Ppt1(-/-) mice demonstrate that glial activation is central to the pathogenesis of INCL. Astrocyte activation precedes neuronal loss, while cytokine upregulation associated with microglial reactivity occurs before and concurrent with neurodegeneration. Therefore, we hypothesized that cytokine cascades associated with neuroinflammation are important therapeutic targets for the treatment of INCL. MW01-2-151SRM (MW151) is a blood-brain barrier penetrant, small-molecule anti-neuroinflammatory that attenuates glial cytokine upregulation in models of neuroinflammation such as traumatic brain injury, Alzheimer's disease, and kainic acid toxicity. Thus, we used MW151, alone and in combination with CNS-directed, AAV-mediated gene therapy, as a possible treatment for INCL. MW151 alone decreased seizure susceptibility. When combined with AAV-mediated gene therapy, treated INCL mice had increased life spans, improved motor performance, and eradication of seizures. Combination-treated INCL mice also had decreased brain atrophy, astrocytosis, and microglial activation, as well as intermediary effects on cytokine upregulation. These data suggest that MW151 can attenuate seizure susceptibility but is most effective when used in conjunction with a therapy that targets the primary genetic defect.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Terapia Genética , Microglía/metabolismo , Lipofuscinosis Ceroideas Neuronales/terapia , Tioléster Hidrolasas/genética , Animales , Antiinflamatorios/farmacocinética , Antiinflamatorios/uso terapéutico , Barrera Hematoencefálica/efectos de los fármacos , Citocinas/genética , Citocinas/metabolismo , Dependovirus/genética , Locomoción , Ratones , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Piridazinas/farmacocinética , Piridazinas/uso terapéutico , Pirimidinas/farmacocinética , Pirimidinas/uso terapéutico , Convulsiones/terapia , Tioléster Hidrolasas/metabolismo
3.
Mol Genet Metab ; 114(2): 281-93, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25257657

RESUMEN

The CLN2 form of neuronal ceroid lipofuscinosis, a type of Batten disease, is a lysosomal storage disorder caused by a deficiency of the enzyme tripeptidyl peptidase-1 (TPP1). Patients exhibit progressive neurodegeneration and loss of motor, cognitive, and visual functions, leading to death by the early teenage years. TPP1-null Dachshunds recapitulate human CLN2 disease. To characterize the safety and pharmacology of recombinant human (rh) TPP1 administration to the cerebrospinal fluid (CSF) as a potential enzyme replacement therapy (ERT) for CLN2 disease, TPP1-null and wild-type (WT) Dachshunds were given repeated intracerebroventricular (ICV) infusions and the pharmacokinetic (PK) profile, central nervous system (CNS) distribution, and safety were evaluated. TPP1-null animals and WT controls received 4 or 16mg of rhTPP1 or artificial cerebrospinal fluid (aCSF) vehicle every other week. Elevated CSF TPP1 concentrations were observed for 2-3 days after the first ICV infusion and were approximately 1000-fold higher than plasma levels at the same time points. Anti-rhTPP1 antibodies were detected in CSF and plasma after repeat rhTPP1 administration, with titers generally higher in TPP1-null than in WT animals. Widespread brain distribution of rhTPP1 was observed after chronic administration. Expected histological changes were present due to the CNS delivery catheters and were similar in rhTPP1 and vehicle-treated animals, regardless of genotype. Neuropathological evaluation demonstrated the clearance of lysosomal storage, preservation of neuronal morphology, and reduction in brain inflammation with treatment. This study demonstrates the favorable safety and pharmacology profile of rhTPP1 ERT administered directly to the CNS and supports clinical evaluation in patients with CLN2 disease.


Asunto(s)
Aminopeptidasas/administración & dosificación , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/administración & dosificación , Terapia de Reemplazo Enzimático , Lipofuscinosis Ceroideas Neuronales/tratamiento farmacológico , Serina Proteasas/administración & dosificación , Aminopeptidasas/efectos adversos , Aminopeptidasas/inmunología , Aminopeptidasas/farmacocinética , Animales , Anticuerpos/sangre , Anticuerpos/líquido cefalorraquídeo , Encéfalo/patología , Encéfalo/ultraestructura , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/efectos adversos , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/inmunología , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/farmacocinética , Progresión de la Enfermedad , Perros , Evaluación Preclínica de Medicamentos , Genotipo , Infusiones Intraventriculares , Lipofuscinosis Ceroideas Neuronales/patología , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/efectos adversos , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/farmacocinética , Serina Proteasas/efectos adversos , Serina Proteasas/inmunología , Serina Proteasas/farmacocinética , Tripeptidil Peptidasa 1
4.
Neurobiol Dis ; 45(3): 1086-100, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22198570

RESUMEN

Niemann-Pick disease type C (NPC) is an inherited lysosomal storage disease characterised by accumulation of cholesterol and glycosphingolipids. NPC patients suffer a progressive neurodegenerative phenotype presenting with motor dysfunction, mental retardation and cognitive decline. To examine the onset and progression of neuropathological insults in NPC we have systematically examined the CNS of a mouse model of NPC1 (Npc1(-/-) mice) at different stages of the disease course. This revealed a specific spatial and temporal pattern of neuropathology in Npc1(-/-) mice, highlighting that sensory thalamic pathways are particularly vulnerable to loss of NPC1 resulting in neurodegeneration in Npc1(-/-) mice. Examination of markers of astrocytosis and microglial activation revealed a particularly pronounced reactive gliosis in the thalamus early in the disease, which subsequently also occurred in interconnected cortical laminae at later ages. Our examination of the precise staging of events demonstrate that the relationship between glia and neurons varies between brain regions in Npc1(-/-) mice, suggesting that the cues causing glial reactivity may differ between brain regions. In addition, aggregations of pre-synaptic markers are apparent in white matter tracts and the thalamus and are likely to be formed within axonal spheroids. Our data provide a new perspective, revealing a number of events that occur prior to and alongside neuron loss and highlighting that these occur in a pathway dependent manner.


Asunto(s)
Corteza Cerebral/patología , Neuroglía/patología , Enfermedades de Niemann-Pick/genética , Enfermedades de Niemann-Pick/patología , Proteínas/genética , Sinapsis/patología , Tálamo/patología , Factores de Edad , Análisis de Varianza , Animales , Antígenos CD/metabolismo , Axones/patología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Regulación de la Expresión Génica/genética , Glutamato Descarboxilasa/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Proteínas del Tejido Nervioso/metabolismo , Vías Nerviosas/patología , Neuroglía/metabolismo , Neuronas/metabolismo , Neuronas/patología , Proteína Niemann-Pick C1 , Proteínas/metabolismo , Proteínas R-SNARE/metabolismo
5.
Mol Genet Metab ; 107(1-2): 213-21, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22704978

RESUMEN

PPT1-related neuronal ceroid lipofuscinosis (NCL) is a lysosomal storage disorder caused by deficiency in a soluble lysosomal enzyme, palmitoyl-protein thioesterase-1 (PPT1). Enzyme replacement therapy (ERT) has not been previously examined in a preclinical animal model. Homozygous PPT1 knockout mice reproduce the known features of the disease, developing signs of motor dysfunction at 5 months of age and death by around 8 months. In the current study, PPT1 knockout mice were treated with purified recombinant PPT1 (0.3 mg, corresponding to 12 mg/kg or 180 U/kg for a 25 g mouse) administered intravenously weekly either 1) from birth; or 2) beginning at 8 weeks of age. The treatment was surprisingly well tolerated and neither anaphylaxis nor antibody formation was observed. In mice treated from birth, survival increased from 236 to 271 days (p<0.001) and the onset of motor deterioration was similarly delayed. In mice treated beginning at 8 weeks, no increases in survival or motor performance were seen. An improvement in neuropathology in the thalamus was seen at 3 months in mice treated from birth, and although this improvement persisted it was attenuated by 7 months. Outside the central nervous system, substantial clearance of autofluorescent storage material in many tissues was observed. Macrophages in spleen, liver and intestine were especially markedly improved, as were acinar cells of the pancreas and tubular cells of the kidney. These findings suggest that ERT may be an option for addressing visceral storage as part of a comprehensive approach to PPT1-related NCL, but more effective delivery methods to target the brain are needed.


Asunto(s)
Terapia de Reemplazo Enzimático , Lipofuscinosis Ceroideas Neuronales/tratamiento farmacológico , Lipofuscinosis Ceroideas Neuronales/mortalidad , Proteínas Recombinantes/administración & dosificación , Tioléster Hidrolasas/administración & dosificación , Animales , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Femenino , Humanos , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Masculino , Ratones , Ratones Noqueados , Actividad Motora/efectos de los fármacos , Prueba de Desempeño de Rotación con Aceleración Constante , Tioléster Hidrolasas/efectos adversos , Vísceras/efectos de los fármacos , Vísceras/metabolismo , Vísceras/patología
6.
FASEB J ; 25(10): 3505-18, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21746868

RESUMEN

Several diseases of the nervous system are characterized by neurodegeneration and death in childhood. Conventional medicine is ineffective, but fetal or neonatal gene therapy may provide an alternative route to treatment. We evaluated the ability of single-stranded and self-complementary adeno-associated virus pseudotype 2/9 (AAV2/9) to transduce the nervous system and target gene expression to specific neural cell types following intravenous injection into fetal and neonatal mice, using control uninjected age-matched mice. Fetal and neonatal administration produced global delivery to the central (brain, spinal cord, and all layers of the retina) and peripheral (myenteric plexus and innervating nerves) nervous system but with different expression profiles within the brain; fetal and neonatal administration resulted in expression in neurons and protoplasmic astrocytes, respectively. Neither single-stranded nor self-complementary AAV2/9 triggered a microglia-mediated immune response following either administration. In summary, intravenous AAV2/9 targets gene expression to specific neural cell types dependent on developmental stage. This represents a powerful tool for studying nervous system development and disease. Furthermore, it may provide a therapeutic strategy for treatment of early lethal genetic diseases, such as Gaucher disease, and for disabling neuropathies, such as preterm brain injury.


Asunto(s)
Sistema Nervioso Central/citología , Dependovirus/clasificación , Vectores Genéticos , Transducción Genética/métodos , Animales , Animales Recién Nacidos , Ojo , Feto , Regulación de la Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Ratones , Sistema Nervioso Periférico/citología , Transgenes
7.
J Biol Chem ; 285(17): 13022-31, 2010 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-20178993

RESUMEN

A family of integral membrane proteins containing a signature DHHC motif has been shown to display protein S-acyltransferase activity, modifying cysteine residues in proteins with fatty acids. The physiological roles of these proteins have largely been unexplored. Here we report that mice homozygous for a hypomorphic allele of a previously uncharacterized member, DHHC5, are born at half the expected rate, and survivors show a marked deficit in contextual fear conditioning, an indicator of defective hippocampal-dependent learning. DHHC5 is highly enriched in a post-synaptic density preparation and co-immunoprecipitates with post-synaptic density protein-95 (PSD-95), an interaction that is mediated through binding of the carboxyl terminus of DHHC5 and the PDZ3 domain of PSD-95. Immunohistochemistry demonstrated that DHHC5 is expressed in the CA3 and dentate gyrus in the hippocampus. These findings point to a previously unsuspected role for DHHC5 in post-synaptic function affecting learning and memory.


Asunto(s)
Aciltransferasas/biosíntesis , Giro Dentado/metabolismo , Regulación Enzimológica de la Expresión Génica/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/biosíntesis , Proteínas de la Membrana/metabolismo , Memoria/fisiología , Proteínas del Tejido Nervioso/metabolismo , Aciltransferasas/genética , Alelos , Animales , Línea Celular , Homólogo 4 de la Proteína Discs Large , Femenino , Guanilato-Quinasas , Homocigoto , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Aprendizaje/fisiología , Masculino , Proteínas de la Membrana/genética , Ratones , Proteínas del Tejido Nervioso/genética , Dominios PDZ , Ratas
8.
Biochem Soc Trans ; 38(6): 1484-8, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21118112

RESUMEN

The NCLs (neuronal ceroid lipofuscinoses) are the most common inherited paediatric neurodegenerative disorder. Although genetically distinct, NCLs can be broadly divided into two categories: one in which the mutation results in a defect in a transmembrane protein, and the other where the defect lies in a soluble lysosomal enzyme. A number of therapeutic approaches are applicable to the soluble lysosomal forms of NCL based on the phenomenon of cross-correction, whereby the ubiquitously expressed mannose 6-phosphate/IGF (insulin-like growth factor) II receptor provides an avenue for endocytosis, trafficking and lysosomal processing of extracellularly delivered enzyme. The present review discusses therapeutic utilization of cross-correction by enzyme-replacement therapy, gene therapy and stem cell therapy for the NCLs, along with an overview of the recent progress in translating these treatments into the clinic.


Asunto(s)
Terapia de Reemplazo Enzimático , Terapia Genética , Lisosomas/enzimología , Lipofuscinosis Ceroideas Neuronales/terapia , Trasplante de Células Madre , Animales , Niño , Endocitosis/fisiología , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Mutación , Lipofuscinosis Ceroideas Neuronales/clasificación , Lipofuscinosis Ceroideas Neuronales/enzimología , Lipofuscinosis Ceroideas Neuronales/genética , Receptor IGF Tipo 2/genética , Receptor IGF Tipo 2/metabolismo
9.
Biochem Soc Trans ; 38(6): 1489-93, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21118113

RESUMEN

The cellular and molecular environment present in the fetus and early newborn provides an excellent opportunity for effective gene transfer. Innate and pre-existing anti-vector immunity may be attenuated or absent and the adaptive immune system predisposed to tolerance towards xenoproteins. Stem cell and progenitor cell populations are abundant, active and accessible. In addition, for treatment of early lethal genetic diseases of the nervous system, the overarching advantage may be that early gene supplementation prevents the onset of irreversible pathological changes. Gene transfer to the fetal mouse nervous system was achieved, albeit inefficiently, as far back as the mid-1980s. Recently, improvements in vector design and production have culminated in near-complete correction of a mouse model of spinal muscular atrophy. In the present article, we review perinatal gene transfer from both a therapeutic and technological perspective.


Asunto(s)
Feto/fisiología , Técnicas de Transferencia de Gen , Enfermedades por Almacenamiento Lisosomal/genética , Enfermedades por Almacenamiento Lisosomal/terapia , Sistema Nervioso , Animales , Femenino , Ganglios Espinales/citología , Ganglios Espinales/enzimología , Vectores Genéticos , Humanos , Ratones , Embarazo
10.
Sci Rep ; 10(1): 2121, 2020 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-32034258

RESUMEN

We have previously designed a library of lentiviral vectors to generate somatic-transgenic rodents to monitor signalling pathways in diseased organs using whole-body bioluminescence imaging, in conscious, freely moving rodents. We have now expanded this technology to adeno-associated viral vectors. We first explored bio-distribution by assessing GFP expression after neonatal intravenous delivery of AAV8. We observed widespread gene expression in, central and peripheral nervous system, liver, kidney and skeletal muscle. Next, we selected a constitutive SFFV promoter and NFκB binding sequence for bioluminescence and biosensor evaluation. An intravenous injection of AAV8 containing firefly luciferase and eGFP under transcriptional control of either element resulted in strong and persistent widespread luciferase expression. A single dose of LPS-induced a 10-fold increase in luciferase expression in AAV8-NFκB mice and immunohistochemistry revealed GFP expression in cells of astrocytic and neuronal morphology. Importantly, whole-body bioluminescence persisted up to 240 days. We have validated a novel biosensor technology in an AAV system by using an NFκB response element and revealed its potential to monitor signalling pathway in a non-invasive manner in a model of LPS-induced inflammation. This technology complements existing germline-transgenic models and may be applicable to other rodent disease models.


Asunto(s)
Dependovirus/genética , Vectores Genéticos/genética , Ratones Transgénicos/genética , Animales , Técnicas Biosensibles/métodos , Expresión Génica/genética , Proteínas Fluorescentes Verdes/genética , Inflamación/genética , Luciferasas de Luciérnaga/genética , Ratones , FN-kappa B/genética , Regiones Promotoras Genéticas/genética , Transducción de Señal/genética , Virus Formadores de Foco en el Bazo/genética , Transcripción Genética/genética
11.
Nat Med ; 24(9): 1317-1323, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30013199

RESUMEN

For inherited genetic diseases, fetal gene therapy offers the potential of prophylaxis against early, irreversible and lethal pathological change. To explore this, we studied neuronopathic Gaucher disease (nGD), caused by mutations in GBA. In adult patients, the milder form presents with hepatomegaly, splenomegaly and occasional lung and bone disease; this is managed, symptomatically, by enzyme replacement therapy. The acute childhood lethal form of nGD is untreatable since enzyme cannot cross the blood-brain barrier. Patients with nGD exhibit signs consistent with hindbrain neurodegeneration, including neck hyperextension, strabismus and, often, fatal apnea1. We selected a mouse model of nGD carrying a loxP-flanked neomycin disruption of Gba plus Cre recombinase regulated by the keratinocyte-specific K14 promoter. Exclusive skin expression of Gba prevents fatal neonatal dehydration. Instead, mice develop fatal neurodegeneration within 15 days2. Using this model, fetal intracranial injection of adeno-associated virus (AAV) vector reconstituted neuronal glucocerebrosidase expression. Mice lived for up to at least 18 weeks, were fertile and fully mobile. Neurodegeneration was abolished and neuroinflammation ameliorated. Neonatal intervention also rescued mice but less effectively. As the next step to clinical translation, we also demonstrated the feasibility of ultrasound-guided global AAV gene transfer to fetal macaque brains.


Asunto(s)
Feto/metabolismo , Terapia Genética , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/terapia , Animales , Enfermedad de Gaucher/genética , Enfermedad de Gaucher/terapia , Humanos , Lactante , Inyecciones Intravenosas , Inyecciones Intraventriculares , Ratones Endogámicos C57BL
12.
Sci Rep ; 7(1): 12412, 2017 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-28963550

RESUMEN

Synapses are an early pathological target in many neurodegenerative diseases ranging from well-known adult onset conditions such as Alzheimer and Parkinson disease to neurodegenerative conditions of childhood such as spinal muscular atrophy (SMA) and neuronal ceroid lipofuscinosis (NCLs). However, the reasons why synapses are particularly vulnerable to such a broad range of neurodegeneration inducing stimuli remains unknown. To identify molecular modulators of synaptic stability and degeneration, we have used the Cln3 -/- mouse model of a juvenile form of NCL. We profiled and compared the molecular composition of anatomically-distinct, differentially-affected pre-synaptic populations from the Cln3 -/- mouse brain using proteomics followed by bioinformatic analyses. Identified protein candidates were then tested using a Drosophila CLN3 model to study their ability to modify the CLN3-neurodegenerative phenotype in vivo. We identified differential perturbations in a range of molecular cascades correlating with synaptic vulnerability, including valine catabolism and rho signalling pathways. Genetic and pharmacological targeting of key 'hub' proteins in such pathways was sufficient to modulate phenotypic presentation in a Drosophila CLN3 model. We propose that such a workflow provides a target rich method for the identification of novel disease regulators which could be applicable to the study of other conditions where appropriate models exist.


Asunto(s)
Glicoproteínas de Membrana/metabolismo , Proteínas de la Membrana/metabolismo , Lipofuscinosis Ceroideas Neuronales/patología , Neuronas , Proteómica/métodos , Sinapsis , Animales , Modelos Animales de Enfermedad , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Humanos , Ratones Endogámicos C57BL , Neuronas/metabolismo , Neuronas/patología , Sinapsis/metabolismo , Sinapsis/patología
13.
EJNMMI Res ; 5(1): 69, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26611870

RESUMEN

BACKGROUND: Macrophages represent a critical cell type in host defense, development and homeostasis. The ability to image non-invasively pro-inflammatory macrophage infiltrate into a transplanted organ may provide an additional tool for the monitoring of the immune response of the recipient against the donor graft. We therefore decided to image in vivo sialoadhesin (Sn, Siglec 1 or CD169) using anti-Sn mAb (SER-4) directly radiolabelled with (99m)Tc pertechnetate. METHODS: We used a heterotopic heart transplantation model where allogeneic or syngeneic heart grafts were transplanted into the abdomen of recipients. In vivo nanosingle-photon emission computed tomography (SPECT/CT) imaging was performed 7 days post transplantation followed by biodistribution and histology. RESULTS: In wild-type mice, the majority of (99m)Tc-SER-4 monoclonal antibody cleared from the blood with a half-life of 167 min and was located predominantly on Sn(+) tissues in the spleen, liver and bone marrow. The biodistribution in the transplantation experiments confirmed data derived from the non-invasive SPECT/CT images, with significantly higher levels of (99m)Tc-SER-4 observed in allogeneic grafts (9.4 (±2.7) %ID/g) compared to syngeneic grafts (4.3 (±10.3) %ID/g) (p = 0.0022) or in mice which received allogeneic grafts injected with (99m)Tc-IgG isotype control (5.9 (±0.6) %ID/g) (p = 0.0185). The transplanted heart to blood ratio was also significantly higher in recipients with allogeneic grafts receiving (99m)Tc-SER-4 as compared to recipients with syngeneic grafts (p = 0.000004) or recipients with allogeneic grafts receiving (99m)Tc-IgG isotype (p = 0.000002). CONCLUSIONS: Here, we demonstrate that imaging of Sn(+) macrophages in inflammation may provide an important additional and non-invasive tool for the monitoring of the pathophysiology of cellular immunity in a transplant model.

14.
Hum Gene Ther ; 25(3): 223-39, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24372003

RESUMEN

Juvenile neuronal ceroid lipofuscinosis (JNCL or CLN3 disease) is an autosomal recessive lysosomal storage disease resulting from mutations in the CLN3 gene that encodes a lysosomal membrane protein. The disease primarily affects the brain with widespread intralysosomal accumulation of autofluorescent material and fibrillary gliosis, as well as the loss of specific neuronal populations. As an experimental treatment for the CNS manifestations of JNCL, we have developed a serotype rh.10 adeno-associated virus vector expressing the human CLN3 cDNA (AAVrh.10hCLN3). We hypothesized that administration of AAVrh.10hCLN3 to the Cln3(Δex7/8) knock-in mouse model of JNCL would reverse the lysosomal storage defect, as well as have a therapeutic effect on gliosis and neuron loss. Newborn Cln3(Δex7/8) mice were administered 3 × 10(10) genome copies of AAVrh.10hCLN3 to the brain, with control groups including untreated Cln3(Δex7/8) mice and wild-type littermate mice. After 18 months, CLN3 transgene expression was detected in various locations throughout the brain, particularly in the hippocampus and deep anterior cortical regions. Changes in the CNS neuronal lysosomal accumulation of storage material were assessed by immunodetection of subunit C of ATP synthase, luxol fast blue staining, and periodic acid-Schiff staining. For all parameters, Cln3(Δex7/8) mice exhibited abnormal lysosomal accumulation, but AAVrh.10hCLN3 administration resulted in significant reductions in storage material burden. There was also a significant decrease in gliosis in AAVrh.10hCLN3-treated Cln3(Δex7/8) mice, and a trend toward improved neuron counts, compared with their untreated counterparts. These data demonstrate that AAVrh.10 delivery of a wild-type cDNA to the CNS is not harmful and instead provides a partial correction of the neurological lysosomal storage defect of a disease caused by a lysosomal membrane protein, indicating that this may be an effective therapeutic strategy for JNCL and other diseases in this category.


Asunto(s)
Dependovirus/genética , Expresión Génica , Vectores Genéticos/genética , Glicoproteínas de Membrana/genética , Chaperonas Moleculares/genética , Lipofuscinosis Ceroideas Neuronales/genética , Lipofuscinosis Ceroideas Neuronales/terapia , Animales , Animales Recién Nacidos , Encéfalo/inmunología , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Vectores Genéticos/administración & dosificación , Vectores Genéticos/efectos adversos , Humanos , Inmunohistoquímica , Inyecciones , Interneuronas/metabolismo , Lisosomas/metabolismo , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Noqueados , Chaperonas Moleculares/metabolismo , Neuroglía/inmunología , Neuroglía/metabolismo , Neuronas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transgenes
15.
Acta Neuropathol Commun ; 2: 133, 2014 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-25200117

RESUMEN

Mucolipidosis IV (MLIV) is caused by mutations in the gene MCOLN1. Patients with MLIV have severe neurologic deficits and very little is known about the brain pathology in this lysosomal disease. Using an accurate mouse model of mucolipidosis IV, we observed early behavioral deficits which were accompanied by activation of microglia and astrocytes. The glial activation that persisted during the course of disease was not accompanied by neuronal loss even at the late stage. In vivo [Ca(2+)]-imaging revealed no changes in resting [Ca(2+)] levels in Mcoln1(-/-) cortical neurons, implying their physiological health. Despite the absence of neuron loss, we observed alterations in synaptic plasticity, as indicated by elevated paired-pulse facilitation and enhanced long-term potentiation. Myelination deficits and severely dysmorphic corpus callosum were present early and resembled white matter pathology in mucolipidosis IV patients. These results indicate the early involvement of glia, and challenge the traditional view of mucolipidosis IV as an overtly neurodegenerative condition.


Asunto(s)
Encéfalo/patología , Encéfalo/fisiopatología , Mucolipidosis/patología , Mucolipidosis/fisiopatología , Animales , Astrocitos/patología , Modelos Animales de Enfermedad , Conducta Exploratoria/fisiología , Gliosis , Masculino , Ratones , Ratones Noqueados , Microglía/patología , Actividad Motora/fisiología , Vaina de Mielina/patología , Plasticidad Neuronal , Neuronas/fisiología , Canales de Potencial de Receptor Transitorio/genética
16.
J Child Neurol ; 28(9): 1117-22, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24014506

RESUMEN

The neuronal ceroid lipofuscinoses (Batten disease) are collectively the most common inherited neurodegenerative disorder of childhood. Mouse models of neuronal ceroid lipofuscinosis represent a powerful resource for investigating the underlying disease mechanisms, which remain poorly understood. Here we present a new rostrocaudal analysis of regional brain volume rather than focusing on central nervous system structures that can be affected. This has revealed an earlier onset of regional atrophy than was suspected in infantile neuronal ceroid lipofuscinosis (or CLN1 disease, infantile), with a greater involvement of rostral structures. We have also provided the first description of regional atrophy in severely affected mice with the juvenile variant (CLN3 disease, juvenile). These data reveal new perspectives on how the central nervous system is affected in these disorders, which have implications for judging the efficacy of therapeutic strategies in preclinical studies.


Asunto(s)
Encéfalo/patología , Glicoproteínas de Membrana/genética , Chaperonas Moleculares/genética , Lipofuscinosis Ceroideas Neuronales/patología , Animales , Atrofia , Modelos Animales de Enfermedad , Ratones , Ratones Noqueados , Lipofuscinosis Ceroideas Neuronales/genética
17.
PLoS One ; 7(4): e35493, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22536393

RESUMEN

Variant late-infantile neuronal ceroid lipofuscinosis, a fatal lysosomal storage disorder accompanied by regional atrophy and pronounced neuron loss in the brain, is caused by mutations in the CLN6 gene. CLN6 is a non-glycosylated endoplasmic reticulum (ER)-resident membrane protein of unknown function. To investigate mechanisms contributing to neurodegeneration in CLN6 disease we examined the nclf mouse, a naturally occurring model of the human CLN6 disease. Prominent autofluorescent and electron-dense lysosomal storage material was found in cerebellar Purkinje cells, thalamus, hippocampus, olfactory bulb and in cortical layer II to V. Another prominent early feature of nclf pathogenesis was the localized astrocytosis that was evident in many brain regions and the more widespread microgliosis. Expression analysis of mutant Cln6 found in nclf mice demonstrated synthesis of a truncated protein with a reduced half-life. Whereas the rapid degradation of the mutant Cln6 protein can be inhibited by proteasomal inhibitors, there was no evidence for ER stress or activation of the unfolded protein response in various brain areas during postnatal development. Age-dependent increases in LC3-II, ubiquitinated proteins, and neuronal p62-positive aggregates were observed, indicating a disruption of the autophagy-lysosome degradation pathway of proteins in brains of nclf mice, most likely due to defective fusion between autophagosomes and lysosomes. These data suggest that proteasomal degradation of mutant Cln6 is sufficient to prevent the accumulation of misfolded Cln6 protein, whereas lysosomal dysfunction impairs constitutive autophagy promoting neurodegeneration.


Asunto(s)
Autofagia , Lisosomas/metabolismo , Lipofuscinosis Ceroideas Neuronales/metabolismo , Animales , Astrocitos/metabolismo , Astrocitos/fisiología , Atrofia , Cerebelo/metabolismo , Cerebelo/patología , Modelos Animales de Enfermedad , Estrés del Retículo Endoplásmico , Proteínas Fluorescentes Verdes/metabolismo , Hipocampo/metabolismo , Hipocampo/patología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Mutagénesis Insercional , Lipofuscinosis Ceroideas Neuronales/patología , Lipofuscinosis Ceroideas Neuronales/fisiopatología , Bulbo Olfatorio/patología , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Proteínas Recombinantes de Fusión/metabolismo , Factor de Transcripción TFIIH , Factores de Transcripción/metabolismo , Proteínas Ubiquitinadas/metabolismo , Respuesta de Proteína Desplegada
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA