Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
JBMR Plus ; 4(10): e10406, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33103031

RESUMEN

Little is known about the time course of muscle-bone effects and whether a reciprocal clinical effect of bone on muscle is present. We hypothesized that lean mass (LM) measures at the arms and legs have a stronger relationship with BMD measured within the same region than the reciprocal effect. The Tobago Bone Health Study was used to address this hypothesis, examining body composition data from total body DXA scans obtained at 0, 48-, and 120-month visits. A longitudinal analysis of LM, LM/height2 (LMI), and LM/BMI was conducted at the upper and lower extremities separately, in relation to BMD within the corresponding region. A cross-lagged panel model was used to study pathways from 0 to 120 months for muscle-bone and bone-muscle effects within the same visit, and across each lagged period. Models accounted for age, height, weight, race, arthritis, prior nontraumatic fracture after age 40, number of units of alcohol consumed per week, current smoking, diagnosis of diabetes mellitus, amount of walking in the last week, grip strength, and hospitalizations. Significant models demonstrating parsimony, and meeting absolute and relative fit criteria were retained. Among 1286 Afro-Caribbean men (mean age: 53 ± 9 years, BMI: 27.43 ± 4.23 kg/m2) with data available for all visits, LM, LMI, and LM/BMI had modest contemporaneous relationships with BMD, which dissipated with lagged time. The size of these effects was stronger at the legs than at the arms. These lagged effects were primarily mediated through indirect same time-point muscle-bone relations rather than a true directly lagged effect. Bone density showed only a small effect on LM arm measures across lagged time, but this was impossible to tease-out from same time-point relations. These results suggest muscle-bone relationships are not long-lasting at least beyond 48 months. Efforts to maintain muscle and bone strength should focus on shorter-term interventions. More studies are needed with serial bone-muscle imaging over shorter periods. © 2020 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

2.
JBMR Plus ; 4(3): e10324, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32161840

RESUMEN

Primary hyperparathyroidism is a condition that occurs infrequently in children. Parathyroid carcinoma, as the underlying cause of hyperparathyroidism in this age group, is extraordinarily rare, with only a few cases reported in the literature. We present a 13-year-old boy with musculoskeletal pain who was found to have brown tumors from primary hyperparathyroidism caused by parafibromin-immunodeficient parathyroid carcinoma. Our patient had no clinical, biochemical, or radiographic evidence of pituitary adenomas, pancreatic tumors, thyroid tumors, pheochromocytoma, jaw tumors, renal abnormalities, or testicular lesions. Germline testing for AP2S1, CASR, CDC73/HRPT2, CDKN1B, GNA11, MEN1, PTH1R, RET, and the GCM2 gene showed no pathological variants, and a microarray of CDC73/HRPT2 did not reveal deletion or duplication. He was managed with i.v. fluids, calcitonin, pamidronate, and denosumab prior to surgery to stabilize hypercalcemia. After removal of a single parathyroid tumor, he developed severe hungry bone syndrome and required 3 weeks of continuous i.v. calcium infusion, in addition to oral calcium and activated vitamin D. Histopathological examination identified an angioinvasive parathyroid carcinoma with global loss of parafibromin (protein encoded by CDC73/HRPT2).HRpQCT and DXA studies were obtained prior to surgery and 18-months postsurgery. HRpQCT showed a resolution of osteolytic lesions combined with structural improvement of cortical porosity and an increase in both cortical thickness and density compared with levels prior to treatment. These findings highlight the added value of HRpQCT in primary hyperparathyroidism. In addition to our case, we have provided a review of the published cases of parathyroid cancer in children. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA