Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 701
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Gut ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38839271

RESUMEN

OBJECTIVE: Fat mass and obesity-associated protein (FTO), an eraser of N 6-methyadenosine (m6A), plays oncogenic roles in various cancers. However, its role in hepatocellular carcinoma (HCC) is unclear. Furthermore, small extracellular vesicles (sEVs, or exosomes) are critical mediators of tumourigenesis and metastasis, but the relationship between FTO-mediated m6A modification and sEVs in HCC is unknown. DESIGN: The functions and mechanisms of FTO and glycoprotein non-metastatic melanoma protein B (GPNMB) in HCC progression were investigated in vitro and in vivo. Neutralising antibody of syndecan-4 (SDC4) was used to assess the significance of sEV-GPNMB. FTO inhibitor CS2 was used to examine the effects on anti-PD-1 and sorafenib treatment. RESULTS: FTO expression was upregulated in patient HCC tumours. Functionally, FTO promoted HCC cell proliferation, migration and invasion in vitro, and tumour growth and metastasis in vivo. FTO knockdown enhanced the activation and recruitment of tumour-infiltrating CD8+ T cells. Furthermore, we identified GPNMB to be a downstream target of FTO, which reduced the m6A abundance of GPNMB, hence, stabilising it from degradation by YTH N 6-methyladenosine RNA binding protein F2. Of note, GPNMB was packaged into sEVs derived from HCC cells and bound to the surface receptor SDC4 of CD8+ T cells, resulting in the inhibition of CD8+ T cell activation. A potential FTO inhibitor, CS2, suppresses the oncogenic functions of HCC cells and enhances the sensitivity of anti-PD-1 and sorafenib treatment. CONCLUSION: Targeting the FTO/m6A/GPNMB axis could significantly suppress tumour growth and metastasis, and enhance immune activation, highlighting the potential of targeting FTO signalling with effective inhibitors for HCC therapy.

2.
Hepatology ; 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38051950

RESUMEN

BACKGROUND AND AIMS: Chromatin assembly factor 1 (CAF-1) is a replication-dependent epigenetic regulator that controls cell cycle progression and chromatin dynamics. In this study, we aim to investigate the immunomodulatory role and therapeutic potential of the CAF-1 complex in HCC. APPROACH AND RESULTS: CAF-1 complex knockout cell lines were established using the CRISPR/Cas9 system. The effects of CAF-1 in HCC were studied in HCC cell lines, nude mice, and immunocompetent mice. RNA-sequencing, ChIP-Seq, and assay for transposase accessible chromatin with high-throughput sequencing (ATAC-Seq) were used to explore the changes in the epigenome and transcriptome. CAF-1 complex was significantly upregulated in human and mouse HCCs and was associated with poor prognosis in patients with HCC. Knockout of CAF-1 remarkably suppressed HCC growth in both in vitro and in vivo models. Mechanistically, depletion of CAF-1 induced replicative stress and chromatin instability, which eventually led to cytoplasmic DNA leakage as micronuclei. Also, chromatin immunoprecipitation sequencing analyses revealed a massive H3.3 histone variant replacement upon CAF-1 knockout. Enrichment of euchromatic H3.3 increased chromatin accessibility and activated the expression of endogenous retrovirus elements, a phenomenon known as viral mimicry. However, cytosolic micronuclei and endogenous retroviruses are recognized as ectopic elements by the stimulator of interferon genes and dsRNA viral sensing pathways, respectively. As a result, the knockout of CAF-1 activated inflammatory response and antitumor immune surveillance and thereby significantly enhanced the anticancer effect of immune checkpoint inhibitors in HCC. CONCLUSIONS: Our findings suggest that CAF-1 is essential for HCC development; targeting CAF-1 may awaken the anticancer immune response and may work cooperatively with immune checkpoint inhibitor treatment in cancer therapy.

3.
Hepatology ; 77(3): 729-744, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35302667

RESUMEN

BACKGROUND AND AIMS: Prognosis of HCC remains poor due to lack of effective therapies. Immune checkpoint inhibitors (ICIs) have delayed response and are only effective in a subset of patients. Treatments that could effectively shrink the tumors within a short period of time are idealistic to be employed together with ICIs for durable tumor suppressive effects. HCC acquires increased tolerance to aneuploidy. The rapid division of HCC cells relies on centrosome duplication. In this study, we found that polo-like kinase 4 (PLK4), a centrosome duplication regulator, represents a therapeutic vulnerability in HCC. APPROACH AND RESULTS: An orally available PLK4 inhibitor, CFI-400945, potently suppressed proliferating HCC cells by perturbing centrosome duplication. CFI-400945 induced endoreplication without stopping DNA replication, causing severe aneuploidy, DNA damage, micronuclei formation, cytosolic DNA accumulation, and senescence. The cytosolic DNA accumulation elicited the DEAD box helicase 41-stimulator of interferon genes-interferon regulatory factor 3/7-NF-κß cytosolic DNA sensing pathway, thereby driving the transcription of senescence-associated secretory phenotypes, which recruit immune cells. CFI-400945 was evaluated in liver-specific p53/phosphatase and tensin homolog knockout mouse HCC models established by hydrodynamic tail vein injection. Tumor-infiltrated immune cells were analyzed. CFI-400945 significantly impeded HCC growth and increased infiltration of cluster of differentiation 4-positive (CD4 + ), CD8 + T cells, macrophages, and natural killer cells. Combination therapy of CFI-400945 with anti-programmed death-1 showed a tendency to improve HCC survival. CONCLUSIONS: We show that by targeting a centrosome regulator, PLK4, to activate the cytosolic DNA sensing-mediated immune response, CFI-400945 effectively restrained tumor progression through cell cycle inhibition and inducing antitumor immunity to achieve a durable suppressive effect even in late-stage mouse HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Ratones , Aneuploidia , Carcinoma Hepatocelular/patología , Ciclo Celular , Línea Celular Tumoral , Neoplasias Hepáticas/patología , Proteínas Serina-Treonina Quinasas/metabolismo
4.
Allergy ; 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38727640

RESUMEN

BACKGROUND: Meteorin-like protein (METRNL)/Interleukin-41 (IL-41) is a novel immune-secreted cytokine/myokine involved in several inflammatory diseases. However, how METRNL exerts its regulatory properties on skin inflammation remains elusive. This study aims to elucidate the functionality and regulatory mechanism of METRNL in atopic dermatitis (AD). METHODS: METRNL levels were determined in skin and serum samples from patients with AD and subsequently verified in the vitamin D3 analogue MC903-induced AD-like mice model. The cellular target of METRNL activity was identified by multiplex immunostaining, single-cell RNA-seq and RNA-seq. RESULTS: METRNL was significantly upregulated in lesions and serum of patients with dermatitis compared to healthy controls (p <.05). Following repeated MC903 exposure, AD model mice displayed elevated levels of METRNL in both ears and serum. Administration of recombinant murine METRNL protein (rmMETRNL) ameliorated allergic skin inflammation and hallmarks of AD in mice, whereas blocking of METRNL signaling led to the opposite. METRNL enhanced ß-Catenin activation, limited the expression of Th2-related molecules that attract the accumulation of Arginase-1 (Arg1)hi macrophages, dendritic cells, and activated mast cells. CONCLUSIONS: METRNL can bind to KIT receptor and subsequently alleviate the allergic inflammation of AD by inhibiting the expansion of immune cells, and downregulating inflammatory gene expression by regulating the level of active WNT pathway molecule ß-Catenin.

5.
Pharmacol Res ; 200: 107072, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38242220

RESUMEN

IL-37 is a newly discovered member of the IL-1 cytokine family which plays an important role in regulating inflammation and maintaining physiological homeostasis. IL-37 showed a close relationship with IL-18, another key cytokine in inflammation regulation and cancer development. IL-37 affects the function of IL-18 either by binding to IL-18Rα, a key subunit of both IL-37 and IL-18 receptor, or by drastically neutralizing the IL-18 protein expression of IL-18 binding protein, an important natural inhibitory molecule of IL-18. Moreover, as another subunit receptor of IL-37, IL-1R8 can suppress IL-18Rα expression, functioning as a surveillance mechanism to prevent overactivation of both IL-18 and IL-37 signaling pathways. While IL-18 and IL-37 share the same receptor subunit, IL-18 would in turn interfere with IL-37 signal transduction by binding to IL-18Rα. It is also reported that IL-18 and IL-37 demonstrated opposing effects in a variety of cancers, such as glioblastoma, lung cancer, leukemia, and hepatocellular cancer. Although the mutual regulation of IL-18 and IL-37 and their diametrically opposed effects in cancers has been reported, IL-18 has not been taken into consideration when interpreting clinical findings and conducting mechanism investigations related to IL-37 in cancer. We aim to review the recent progress in IL-18 and IL-37 research in cancer and summarize the correlation between IL-18 and IL-37 in cancer based on their expression level and underlying mechanisms, which would provide new insights into elucidating the conflicting roles of IL-18 and IL-37 in cancer and bring new ideas for translational research related to IL-18 and IL-37.


Asunto(s)
Interleucina-18 , Neoplasias , Humanos , Interleucina-18/metabolismo , Citocinas , Transducción de Señal , Inflamación
6.
Pediatr Allergy Immunol ; 35(2): e14086, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38351891

RESUMEN

BACKGROUND: Growing up on traditional farms protects children from the development of asthma and allergies. However, we have identified distinct asthma-protective factors, such as poultry exposure. This study aims to examine the biological effect of rural exposure in China. METHODS: We recruited 67 rural children (7.4 ± 0.9 years) and 79 urban children (6.8 ± 0.6 years). Depending on the personal history of exposure to domestic poultry (DP), rural children were further divided into those with DP exposure (DP+ , n = 30) and those without (DP- , n = 37). Blood samples were collected to assess differential cell counts and expression of immune-related genes. Dust samples were collected from poultry stables inside rural households. In vivo activities of nasal administration of DP dust extracts were tested in an ovalbumin-induced asthma model. RESULTS: There was a stepwise increase in the percentage of eosinophils (%) from rural DP+ children (median = 1.65, IQR = [1.28, 3.75]) to rural DP- children (3.40, [1.70, 6.50]; DP+ vs. DP- , p = .087) and to the highest of their urban counterparts (4.00, [2.00, 7.25]; urban vs. DP+ , p = .017). Similarly, rural children exhibited reduced mRNA expression of immune markers, both at baseline and following lipopolysaccharide (LPS) stimulation. Whereas LPS stimulation induced increased secretion of Th1 and proinflammatory cytokines in rural DP+ children compared to rural DP- children and urban children. Bronchoalveolar lavage of mice with intranasal instillation of dust extracts from DP household showed a significant decrease in eosinophils as compared to those of control mice (p < .05). Furthermore, DP dust strongly inhibited gene expression of Th2 signature cytokines and induced IL-17 expression in the murine asthma model. CONCLUSIONS: Immune responses of rural children were dampened compared to urban children and those exposed to DP had further downregulated immune responsiveness. DP dust extracts ameliorated Th2-driven allergic airway inflammation in mice. Determining active protective components in the rural environment may provide directions for the development of primary prevention of asthma.


Asunto(s)
Asma , Hipersensibilidad , Niño , Humanos , Animales , Ratones , Lipopolisacáridos/efectos adversos , Alérgenos , Citocinas/metabolismo , Polvo , Inflamación , Modelos Animales de Enfermedad , Inmunidad , Ratones Endogámicos BALB C , Ovalbúmina/efectos adversos
7.
Bioorg Chem ; 144: 107176, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38330721

RESUMEN

Repurposing drugs can significantly reduce the time and costs associated with drug discovery and development. However, many drug compounds possess intrinsic fluorescence, resulting in aberrations such as auto-fluorescence, scattering and quenching, in fluorescent high-throughput screening assays. To overcome these drawbacks, time-resolved technologies have received increasing attention. In this study, we have developed a rapid and efficient screening platform based on time-resolved emission spectroscopy in order to screen for inhibitors of the DNA repair enzyme, uracil-DNA glycosylase (UDG). From a database of 1456 FDA/EMA-approved drugs, sodium stibogluconate was discovered as a potent UDG inhibitor. This compound showed synergistic cytotoxicity against 5-fluorouracil-resistant cancer cells. This work provides a promising future for time-resolved technologies for high-throughput screening (HTS), allowing for the swift identification of bioactive compounds from previously overlooked scaffolds due to their inherent fluorescence properties.


Asunto(s)
Neoplasias de la Próstata , Uracil-ADN Glicosidasa , Humanos , Masculino , Uracil-ADN Glicosidasa/química , Oligonucleótidos , Gluconato de Sodio Antimonio , Evaluación Preclínica de Medicamentos , Reposicionamiento de Medicamentos , Detección Precoz del Cáncer
8.
Ann Vasc Surg ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39029895

RESUMEN

INTRODUCTION: The use of iliac branch device (IBD) is increasing due to the less invasive character and accumulated experience of physicians in this endovascular technique. Clinical data regarding the E-liac stent graft from Artivion®, however, are scarce. This study shows the mid-term outcomes of the E-liac stent graft from a large single centre. METHODS: Patients treated with IBD for (aorto-)iliac aneurysms between September 2015 and December 2022 with follow-up in our centre were included. (Post)operative (technical success, reintervention, 30-day mortality) and mid-term outcomes (endoleak, reintervention, hypogastric patency, mortality) were analysed. RESULTS: Sixty-three patients (60 male, median age 70 years (IQR 66-;76)) were treated with 82 E-liac stent grafts for aorto-iliac aneurysms with a median follow-up of 38 months (IQR 22-51). The technical success rate was 95%. 97.6% of the interal iliac arteries remained patent during follow-up. No 30-day mortality was encountered. During follow-up one patient had an endoleak type 1b of both hypogastric arteries, however the patient refused additional interventions. One other patient had a type 2 endoleak with contained rupture. Paliative treatment was chosen because of the patient's severe comorbidities. One (1.6%) IBD-related reintervention was performed with relining of the stent graft. Secondary patency of the interal iliac artery was 95.1% and the mortality was 25.4% during follow-up. CONCLUSIONS: This study shows high technical success rates for the E-liac stent graft, with corresponding good mid-term outcomes. The E-liac stent graft is a feasible, safe and effective stent graft in the treatment of aorto-iliac aneurysms.

9.
BMC Geriatr ; 24(1): 58, 2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38218776

RESUMEN

BACKGROUND: Robots have the potential to assist older adults in their home-based daily living tasks. Previous studies indicated that older adults generally accept robot assistance. However, the preferences of older adults with different functional dependence levels are lacking. These older adults encounter varying levels of difficulty in daily living and may have distinct preferences for robot assistance. This study aimed to describe and compare the preferences for robot assistance on domestic tasks in older adults with different functional dependence levels. METHODS: This cross-sectional descriptive study recruited a convenience sample of 385 older adults in Hong Kong. They were categorized as independent, partially dependent, and dependent using the Katz Index of Independence in Activities of Daily Living. Their preferences for robot assistance on a list of 48 domestic tasks under six categories were assessed through the Assistance Preference Checklist. Differences in preferences between the three groups were compared using one-way ANOVA test. RESULTS: Findings revealed the differences and similarities in preferences between participants with different dependence levels. In most domestic tasks under the personal care category, dependent and partially dependent older adults reported a significantly lower preferences for human assistance or a higher preferences for robot assistance (p < 0.001), compared with the independent ones. The effect size varied from medium to large (eta squared = 0.07 to 0.52). However, participants, regardless of functional dependence levels, preferred human to assist in some domestic tasks under the health and leisure activities category and preferred robot to assist in most of the domestic tasks under the chores, information management, and manipulating objects category. CONCLUSIONS: Older adults with different levels of functional dependence exhibit different preferences for robotic assistance. To effectively use robots and assist older adults as they age, the specific preferences of older adults must be considered before designing and introducing robots in domestic care.


Asunto(s)
Actividades Cotidianas , Robótica , Humanos , Anciano , Estado Funcional , Estudios Transversales , Autocuidado
10.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33947817

RESUMEN

DNA damage plays a central role in the cellular pathogenesis of polyglutamine (polyQ) diseases, including Huntington's disease (HD). In this study, we showed that the expression of untranslatable expanded CAG RNA per se induced the cellular DNA damage response pathway. By means of RNA sequencing (RNA-seq), we found that expression of the Nudix hydrolase 16 (NUDT16) gene was down-regulated in mutant CAG RNA-expressing cells. The loss of NUDT16 function results in a misincorporation of damaging nucleotides into DNAs and leads to DNA damage. We showed that small CAG (sCAG) RNAs, species generated from expanded CAG transcripts, hybridize with CUG-containing NUDT16 mRNA and form a CAG-CUG RNA heteroduplex, resulting in gene silencing of NUDT16 and leading to the DNA damage and cellular apoptosis. These results were further validated using expanded CAG RNA-expressing mouse primary neurons and in vivo R6/2 HD transgenic mice. Moreover, we identified a bisamidinium compound, DB213, that interacts specifically with the major groove of the CAG RNA homoduplex and disfavors the CAG-CUG heteroduplex formation. This action subsequently mitigated RNA-induced silencing complex (RISC)-dependent NUDT16 silencing in both in vitro cell and in vivo mouse disease models. After DB213 treatment, DNA damage, apoptosis, and locomotor defects were rescued in HD mice. This work establishes NUDT16 deficiency by CAG repeat RNAs as a pathogenic mechanism of polyQ diseases and as a potential therapeutic direction for HD and other polyQ diseases.


Asunto(s)
Apoptosis/genética , Daño del ADN , Enfermedad de Huntington/genética , Péptidos/genética , Pirofosfatasas/genética , ARN/genética , Expansión de Repetición de Trinucleótido/genética , Animales , Apoptosis/efectos de los fármacos , Benzamidinas/metabolismo , Benzamidinas/farmacología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/prevención & control , Ratones Endogámicos C57BL , Ratones Transgénicos , Simulación de Dinámica Molecular , Pirofosfatasas/metabolismo , ARN/metabolismo , Interferencia de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo
11.
J Neuroeng Rehabil ; 21(1): 123, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39030574

RESUMEN

BACKGROUND: Blood flow restriction (BFR) resistance training has demonstrated efficacy in promoting strength gains beneficial for rehabilitation. Yet, the distinct functional advantages of BFR strength training using high-load and low-load protocols remain unclear. This study explored the behavioral and neurophysiological mechanisms that explain the differing effects after volume-matched high-load and low-load BFR training. METHODS: Twenty-eight healthy participants were randomly assigned to the high-load blood flow restriction (BFR-HL, n = 14) and low-load blood flow restriction (BFR-LL, n = 14) groups. They underwent 3 weeks of BFR training for isometric wrist extension at intensities of 25% or 75% of maximal voluntary contraction (MVC) with matched training volume. Pre- and post-tests included MVC and trapezoidal force-tracking tests (0-75%-0% MVC) with multi-channel surface electromyography (EMG) from the extensor digitorum. RESULTS: The BFR-HL group exhibited a greater strength gain than that of the BFR-LL group after training (BFR_HL: 26.96 ± 16.33% vs. BFR_LL: 11.16 ± 15.34%)(p = 0.020). However, only the BFR-LL group showed improvement in force steadiness for tracking performance in the post-test (p = 0.004), indicated by a smaller normalized change in force fluctuations compared to the BFR-HL group (p = 0.048). After training, the BFR-HL group activated motor units (MUs) with higher recruitment thresholds (p < 0.001) and longer inter-spike intervals (p = 0.002), contrary to the BFR-LL group, who activated MUs with lower recruitment thresholds (p < 0.001) and shorter inter-spike intervals (p < 0.001) during force-tracking. The discharge variability (p < 0.003) and common drive index (p < 0.002) of MUs were consistently reduced with training for the two groups. CONCLUSIONS: BFR-HL training led to greater strength gains, while BFR-LL training better improved force precision control due to activation of MUs with lower recruitment thresholds and higher discharge rates.


Asunto(s)
Electromiografía , Entrenamiento de Fuerza , Muñeca , Humanos , Masculino , Entrenamiento de Fuerza/métodos , Femenino , Muñeca/fisiología , Adulto Joven , Adulto , Contracción Isométrica/fisiología , Músculo Esquelético/fisiología , Músculo Esquelético/irrigación sanguínea , Fuerza Muscular/fisiología , Terapia de Restricción del Flujo Sanguíneo/métodos
12.
Int J Mol Sci ; 25(13)2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-39000023

RESUMEN

Chronic exposure to harmful pollutants, chemicals, and pathogens from the environment can lead to pathological changes in the epithelial barrier, which increase the risk of developing an allergy. During allergic inflammation, epithelial cells send proinflammatory signals to group 2 innate lymphoid cell (ILC2s) and eosinophils, which require energy and resources to mediate their activation, cytokine/chemokine secretion, and mobilization of other cells. This review aims to provide an overview of the metabolic regulation in allergic asthma, atopic dermatitis (AD), and allergic rhinitis (AR), highlighting its underlying mechanisms and phenotypes, and the potential metabolic regulatory roles of eosinophils and ILC2s. Eosinophils and ILC2s regulate allergic inflammation through lipid mediators, particularly cysteinyl leukotrienes (CysLTs) and prostaglandins (PGs). Arachidonic acid (AA)-derived metabolites and Sphinosine-1-phosphate (S1P) are significant metabolic markers that indicate immune dysfunction and epithelial barrier dysfunction in allergy. Notably, eosinophils are promoters of allergic symptoms and exhibit greater metabolic plasticity compared to ILC2s, directly involved in promoting allergic symptoms. Our findings suggest that metabolomic analysis provides insights into the complex interactions between immune cells, epithelial cells, and environmental factors. Potential therapeutic targets have been highlighted to further understand the metabolic regulation of eosinophils and ILC2s in allergy. Future research in metabolomics can facilitate the development of novel diagnostics and therapeutics for future application.


Asunto(s)
Hipersensibilidad , Humanos , Hipersensibilidad/metabolismo , Hipersensibilidad/inmunología , Animales , Eosinófilos/metabolismo , Eosinófilos/inmunología , Células Epiteliales/metabolismo , Células Epiteliales/inmunología , Inmunidad Innata , Dermatitis Atópica/inmunología , Dermatitis Atópica/metabolismo , Dermatitis Atópica/patología , Linfocitos/metabolismo , Linfocitos/inmunología , Rinitis Alérgica/metabolismo , Rinitis Alérgica/inmunología
13.
Int J Mol Sci ; 25(6)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38542056

RESUMEN

Environmental pollutants are closely linked to lung cancer. The different types of environmental pollutants can be classified as chemical, physical, and biological. The roles of common chemical and physical pollutants such as PM2.5, smoking, radon, asbestos, and formaldehyde in lung cancer have been extensively studied. Notably, the worldwide COVID-19 pandemic raised awareness of the strong link between biological pollution and human health. Allergens such as house dust mites and pollen, as well as bacteria and viruses, are common biological pollutants. A few biological pollutants have been reported to promote lung cancer via inducing inflammatory cytokines secretion, such as IL-1ß, IL-6, and TGF-ß, as well as suppressing immunosurveillance by upregulating regulatory T (Treg) cells while dampening the function of CD8+ T cells and dendritic cells. However, the correlation between common biological hazards, such as SARS-CoV-2, human immunodeficiency viruses, Helicobacter pylori, and house dust mites, and lung cancer is not fully elucidated, and the underlying mechanisms are still unclear. Moreover, the majority of studies that have been performed in lung cancer and biological carcinogens were not based on the perspective of biological pollutants, which has challenged the systematicity and coherence in the field of biological pollutants in lung cancer. Here, in addition to reviewing the recent progress made in investigating the roles of allergens, viruses, and bacteria in lung cancer, we summarized the potential mechanisms underlying biological pollutants in lung cancer. Our narrative review can shed light on understanding the significance of biological pollutants in lung cancer, as well as inspire and broaden research ideas on lung cancer etiology.


Asunto(s)
Contaminantes Ambientales , Neoplasias Pulmonares , Animales , Humanos , Neoplasias Pulmonares/epidemiología , Neoplasias Pulmonares/etiología , Linfocitos T CD8-positivos , Pandemias , Alérgenos , Pyroglyphidae
14.
J Am Chem Soc ; 145(4): 2638-2646, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36633557

RESUMEN

A new series of robust C^C^N carbazolylgold(III) complexes is designed and synthesized through the introduction of inert and sterically bulky oligophenyl substituents on the pyridyl moiety of the cyclometalating ligand. High photoluminescence quantum yields of up to 96% are recorded with these complexes doped in solid-state thin films, and short excited-state lifetimes of 0.3 µs or less in the solid state at room temperature are found. Promising electroluminescence (EL) performances are shown by the vacuum-deposited organic light-emitting devices (OLEDs) based on this series of gold(III) complexes. High external quantum efficiencies of up to 19.5% with efficiency roll-offs of down to 10% at a practical luminance brightness level of 1000 cd m-2 are achieved. More importantly, record-long operational lifetimes (LT50) of up to 470,700 h at 100 cd m-2 are realized, which is currently the highest value among all classes of gold(III) complexes with tridentate pincer ligands. Particularly, by introducing a sterically bulky terphenyl moiety on the reactive site of the pyridine ring, the LT50 value is shown to attain ∼7 times longer half-lifetime than that based on the unsubstituted complex. These unprecedented EL performances and the simple synthetic route in a mercury-free fashion make them promising emitting materials for practical OLEDs toward commercialization.

15.
J Hepatol ; 78(2): 376-389, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36455783

RESUMEN

BACKGROUND & AIMS: Tyrosine kinase inhibitors (TKIs) and immune checkpoint inhibitors (ICIs) are the only two classes of FDA-approved drugs for individuals with advanced hepatocellular carcinoma (HCC). While TKIs confer only modest survival benefits, ICIs have been associated with remarkable outcomes but only in the minority of patients who respond. Understanding the mechanisms that determine the efficacy of ICIs in HCC will help to stratify patients likely to respond to ICIs. This study aims to elucidate how genetic composition and specific oncogenic pathways regulate the immune composition of HCC, which directly affects response to ICIs. METHODS: A collection of mouse HCCs with genotypes that closely simulate the genetic composition found in human HCCs were established using genome-editing approaches involving the delivery of transposon and CRISPR-Cas9 systems by hydrodynamic tail vein injection. Mouse HCC tumors were analyzed by RNA-sequencing while tumor-infiltrating T cells were analyzed by flow cytometry and single-cell RNA-sequencing. RESULTS: Based on the CD8+ T cell-infiltration level, we characterized tumors with different genotypes into cold and hot tumors. Anti-PD-1 treatment had no effect in cold tumors but was greatly effective in hot tumors. As proof-of-concept, a cold tumor (Trp53KO/MYCOE) and a hot tumor (Keap1KO/MYCOE) were further characterized. Tumor-infiltrating CD8+ T cells from Keap1KO/MYCOE HCCs expressed higher levels of proinflammatory chemokines and exhibited enrichment of a progenitor exhausted CD8+ T-cell phenotype compared to those in Trp53KO/MYCOE HCCs. The TKI sorafenib sensitized Trp53KO/MYCOE HCCs to anti-PD-1 treatment. CONCLUSION: Single anti-PD-1 treatment appears to be effective in HCCs with genetic mutations driving hot tumors, while combined anti-PD-1 and sorafenib treatment may be more appropriate in HCCs with genetic mutations driving cold tumors. IMPACT AND IMPLICATIONS: Genetic alterations of different driver genes in mouse liver cancers are associated with tumor-infiltrating CD8+ T cells and anti-PD-1 response. Mouse HCCs with different genetic compositions can be grouped into hot and cold tumors based on the level of tumor-infiltrating CD8+ T cells. This study provides proof-of-concept evidence to show that hot tumors are responsive to anti-PD-1 treatment while cold tumors are more suitable for combined treatment with anti-PD-1 and sorafenib. Our study might help to guide the design of patient stratification systems for single or combined treatments involving anti-PD-1.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Ratones , Animales , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Sorafenib/farmacología , Sorafenib/uso terapéutico , Proteína 1 Asociada A ECH Tipo Kelch/genética , Edición Génica , Linfocitos T CD8-positivos , Factor 2 Relacionado con NF-E2/genética , ARN/metabolismo
16.
Gastroenterology ; 162(2): 548-561.e4, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34687739

RESUMEN

BACKGROUND AND AIMS: Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is associated with altered gut microbiota composition. Phylogenetic groups of gut bacteria involved in the metabolism of short chain fatty acids (SCFAs) were depleted in SARS-CoV-2-infected patients. We aimed to characterize a functional profile of the gut microbiome in patients with COVID-19 before and after disease resolution. METHODS: We performed shotgun metagenomic sequencing on fecal samples from 66 antibiotics-naïve patients with COVID-19 and 70 non-COVID-19 controls. Serial fecal samples were collected (at up to 6 times points) during hospitalization and beyond 1 month after discharge. We assessed gut microbial pathways in association with disease severity and blood inflammatory markers. We also determined changes of microbial functions in fecal samples before and after disease resolution and validated these functions using targeted analysis of fecal metabolites. RESULTS: Compared with non-COVID-19 controls, patients with COVID-19 with severe/critical illness showed significant alterations in gut microbiome functionality (P < .001), characterized by impaired capacity of gut microbiome for SCFA and L-isoleucine biosynthesis and enhanced capacity for urea production. Impaired SCFA and L-isoleucine biosynthesis in gut microbiome persisted beyond 30 days after recovery in patients with COVID-19. Targeted analysis of fecal metabolites showed significantly lower fecal concentrations of SCFAs and L-isoleucine in patients with COVID-19 before and after disease resolution. Lack of SCFA and L-isoleucine biosynthesis significantly correlated with disease severity and increased plasma concentrations of CXCL-10, NT- proB-type natriuretic peptide, and C-reactive protein (all P < .05). CONCLUSIONS: Gut microbiome of patients with COVID-19 displayed impaired capacity for SCFA and L-isoleucine biosynthesis that persisted even after disease resolution. These 2 microbial functions correlated with host immune response underscoring the importance of gut microbial functions in SARS-CoV-2 infection pathogenesis and outcome.


Asunto(s)
COVID-19/microbiología , Ácidos Grasos Volátiles/biosíntesis , Microbioma Gastrointestinal/genética , Inmunidad/fisiología , Isoleucina/biosíntesis , Adulto , Biomarcadores/sangre , Estudios de Casos y Controles , Heces/microbiología , Femenino , Humanos , Masculino , Metagenómica , Persona de Mediana Edad , Filogenia , SARS-CoV-2 , Índice de Severidad de la Enfermedad
17.
Small ; 19(50): e2304546, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37626462

RESUMEN

Crystalline/amorphous phase engineering is demonstrated as a powerful strategy for electrochemical performance optimization. However, it is still a considerable challenge to prepare transition metal-based crystalline/amorphous heterostructures because of the low redox potential of transition metal ions. Herein, a facile H2 -assisted method is developed to prepare ternary Ni2 P/MoNiP2 /MoP crystalline/amorphous heterostructure nanowires on the conductive substrate. The characterization results show that the content of the MoNiP2 phase and the crystallinity of the MoP phase can be tuned by simply controlling the H2 concentration. The obtained electrocatalyst exhibits a superior alkaline hydrogen evolution reaction performance, delivering overpotentials of 20 and 76 mV to reach current densities of 10 and 100 mA cm-2 with a Tafel slope of 30.6 mV dec-1 , respectively. The catalysts also reveal excellent stability under a constant 100 h operation, higher than most previously reported electrocatalysts. These striking performances are ascribed to the optimized hydrogen binding energy and favorable hydrogen adsorption/desorption kinetics. This work not only exhibits the potential application of ternary Ni2 P/MoNiP2 /MoP crystalline/amorphous heterostructure nanowires catalysts for practical electrochemical water splitting, but also paves the way to prepare non-noble transition metal-based electrocatalysts with optimized crystalline/amorphous heterostructures.

18.
PLoS Pathog ; 17(3): e1009435, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33788899

RESUMEN

Inflammasome-derived cytokines, IL-1ß and IL-18, and complement cascade have been independently implicated in the pathogenesis of tuberculosis (TB)-immune reconstitution inflammatory syndrome (TB-IRIS), a complication affecting HIV+ individuals starting antiretroviral therapy (ART). Although sublytic deposition of the membrane attack complex (MAC) has been shown to promote NLRP3 inflammasome activation, it is unknown whether these pathways may cooperatively contribute to TB-IRIS. To evaluate the activation of inflammasome, peripheral blood mononuclear cells (PBMCs) from HIV-TB co-infected patients prior to ART and at the IRIS or equivalent timepoint were incubated with a probe used to assess active caspase-1/4/5 followed by screening of ASC (apoptosis-associated speck-like protein containing a CARD domain) specks as a readout of inflammasome activation by imaging flow cytometry. We found higher numbers of monocytes showing spontaneous caspase-1/4/5+ASC-speck formation in TB-IRIS compared to TB non-IRIS patients. Moreover, numbers of caspase-1/4/5+ASC-speck+ monocytes positively correlated with IL-1ß/IL-18 plasma levels. Besides increased systemic levels of C1q and C5a, TB-IRIS patients also showed elevated C1q and C3 deposition on monocyte cell surface, suggesting aberrant classical complement activation. A clustering tSNE analysis revealed TB-IRIS patients are enriched in a CD14highCD16- monocyte population that undergoes MAC deposition and caspase-1/4/5 activation compared to TB non-IRIS patients, suggesting complement-associated inflammasome activation during IRIS events. Accordingly, PBMCs from patients were more sensitive to ex-vivo complement-mediated IL-1ß secretion than healthy control cells in a NLRP3-dependent manner. Therefore, our data suggest complement-associated inflammasome activation may fuel the dysregulated TB-IRIS systemic inflammatory cascade and targeting this pathway may represent a novel therapeutic approach for IRIS or related inflammatory syndromes.


Asunto(s)
Activación de Complemento/inmunología , Infecciones por VIH/tratamiento farmacológico , Síndrome Inflamatorio de Reconstitución Inmune/inmunología , Inflamasomas/inmunología , Monocitos/inmunología , Tuberculosis/complicaciones , Fármacos Anti-VIH/efectos adversos , Coinfección/inmunología , Proteínas Ligadas a GPI/inmunología , Humanos , Síndrome Inflamatorio de Reconstitución Inmune/inducido químicamente , Receptores de Lipopolisacáridos/inmunología , Receptores de IgG/inmunología , Síndrome , Tuberculosis/inmunología
19.
Bioconjug Chem ; 34(10): 1727-1737, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37750807

RESUMEN

Glutathione S-transferase is heterogeneously expressed in breast cancer cells and is therefore emerging as a potential diagnostic biomarker for studying the heterogeneity of breast cancers. However, available fluorescent probes for GSTs depend heavily on GSTs-catalyzed glutathione (GSH) nucleophilic substitution reactions, making them susceptible to interference by the high concentration of nucleophilic species in the cellular environment. Moreover, the functions of subcellular GSTs are generally overlooked due to the lack of suitable luminescence probes. Herein, we report a highly selective affinity-based luminescence probe 1 for GST in breast cancer cells through tethering a GST inhibitor, ethacrynic acid, to an iridium(III) complex. Compared to activity-based probes which require the use of GSH, this probe could image GST-pi in the mitochondria by directly adducting to GST-pi (or potentially GST-pi/GS) in living cells. Probe 1 possesses desirable photophysical properties including a lifetime of 911 ns, a Stokes shift of 343 nm, and high photostability. The "turn on" luminescence mode of the probe enables highly selective detection of the GST with a limit of detection of 1.01 µM, while its long emission lifetime allows sensitive detection in organic dye-spiked autofluorescence samples by a time-resolved mode. The probe was further applied to specifically and quantitatively visualize MDA-MB-231 cells via specific binding to mitochondrial GST, and could differentiate breast cell lines based on their expression levels of GST. To the best of our knowledge, this probe is the first affinity-based iridium(III) imaging probe for the subcellular GST. Our work provides a valuable tool for unmasking the diverse roles of a subcellular GST in living systems, as well as for studying the heterogeneity of breast cancers.


Asunto(s)
Neoplasias de la Mama , Glutatión Transferasa , Humanos , Femenino , Glutatión Transferasa/metabolismo , Neoplasias de la Mama/diagnóstico por imagen , Iridio , Ácido Etacrínico , Mitocondrias/metabolismo , Glutatión/metabolismo
20.
Chemistry ; 29(43): e202301292, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37198720

RESUMEN

Systematic investigations on the reactions between cis-[M(dppm)2 Cl2 ] (M=Ru/Os; dppm=1,1-bis(diphenylphosphino)methane) and pyridine/quinoline substituted homopropargylic alcohols uncovered the diverse Ru(II)/Os(II)-induced alkyne activation pathways. The alkynes underwent cyclization on M via a "non-vinylidene" pathway at lower temperatures, resulting in alkenyl intermediates which might further metallacyclize to give metallapyrroloindolizines. Conversely, reactions at higher temperatures induced alkyne cyclization on M via a "vinylidene" pathway, affording cyclic oxacarbene complexes. Additionally, a rare decyclization mechanism was observed during the transformation of a metallacyclization-resistant alkenyl complex into a cyclic oxacarbene complex. DFT calculations were employed to validate the experimental findings. Overall, these results not only provide insights into controlling alkyne activation pathways, but also offer new strategies for preparing metalated heterocyclic and metallacyclic complexes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA