Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 116(11): 5015-5020, 2019 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-30804180

RESUMEN

Chloroplast retrograde signaling networks are vital for chloroplast biogenesis, operation, and signaling, including excess light and drought stress signaling. To date, retrograde signaling has been considered in the context of land plant adaptation, but not regarding the origin and evolution of signaling cascades linking chloroplast function to stomatal regulation. We show that key elements of the chloroplast retrograde signaling process, the nucleotide phosphatase (SAL1) and 3'-phosphoadenosine-5'-phosphate (PAP) metabolism, evolved in streptophyte algae-the algal ancestors of land plants. We discover an early evolution of SAL1-PAP chloroplast retrograde signaling in stomatal regulation based on conserved gene and protein structure, function, and enzyme activity and transit peptides of SAL1s in species including flowering plants, the fern Ceratopteris richardii, and the moss Physcomitrella patens Moreover, we demonstrate that PAP regulates stomatal closure via secondary messengers and ion transport in guard cells of these diverse lineages. The origin of stomata facilitated gas exchange in the earliest land plants. Our findings suggest that the conquest of land by plants was enabled by rapid response to drought stress through the deployment of an ancestral SAL1-PAP signaling pathway, intersecting with the core abscisic acid signaling in stomatal guard cells.


Asunto(s)
Adaptación Fisiológica , Evolución Biológica , Cloroplastos/metabolismo , Transducción de Señal , Viridiplantae/fisiología , Adenosina Difosfato , Embryophyta/fisiología , Peróxido de Hidrógeno/metabolismo , Transporte Iónico , Movimiento , Óxido Nítrico/metabolismo , Filogenia , Estomas de Plantas/fisiología
2.
Am J Bot ; 107(12): 1736-1748, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33280088

RESUMEN

PREMISE: Large disjunctions in species distributions provide excellent opportunities to study processes that shape biogeographic patterns. One such disjunction is the eastern Asia-eastern North America (EA-ENA) floristic disjunction. For many genera with this disjunction, species richness is greater in EA than in ENA; this pattern has been attributed, in part, to higher rates of molecular evolution and speciation in EA. Longer branch lengths have been found in some EA clades, relative to their ENA sister clades, suggesting that the EA lineages have evolved at a higher rate, possibly due to environmental heterogeneity, potentially contributing to the species richness anomaly. METHODS: To evaluate whether rates of molecular evolution are elevated in EA relative to ENA, we used transcriptomes from species in 11 genera displaying this disjunction. Rates of molecular evolution were estimated for up to 385 orthologous nuclear loci per genus. RESULTS: No statistically significant differences were identified in pairwise comparisons between EA and ENA sister species, suggesting equal rates of molecular evolution for both species; the data also suggest similar selection pressures in both regions. For larger genera, evidence likewise argues against more species-rich clades having higher molecular evolutionary rates, regardless of region. Our results suggest that genes across multiple gene ontology categories are evolving at similar rates under purifying selection in species in both regions. CONCLUSIONS: Our data support the hypothesis that greater species richness in EA than ENA is due to factors other than an overall increase in rates of molecular evolution in EA.


Asunto(s)
Evolución Molecular , Transcriptoma , Asia , Asia Oriental , América del Norte , Filogenia
3.
Am J Bot ; 107(1): 91-115, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31814117

RESUMEN

PREMISE: Phylogenetic trees of bryophytes provide important evolutionary context for land plants. However, published inferences of overall embryophyte relationships vary considerably. We performed phylogenomic analyses of bryophytes and relatives using both mitochondrial and plastid gene sets, and investigated bryophyte plastome evolution. METHODS: We employed diverse likelihood-based analyses to infer large-scale bryophyte phylogeny for mitochondrial and plastid data sets. We tested for changes in purifying selection in plastid genes of a mycoheterotrophic liverwort (Aneura mirabilis) and a putatively mycoheterotrophic moss (Buxbaumia), and compared 15 bryophyte plastomes for major structural rearrangements. RESULTS: Overall land-plant relationships conflict across analyses, generally weakly. However, an underlying (unrooted) four-taxon tree is consistent across most analyses and published studies. Despite gene coverage patchiness, relationships within mosses, liverworts, and hornworts are largely congruent with previous studies, with plastid results generally better supported. Exclusion of RNA edit sites restores cases of unexpected non-monophyly to monophyly for Takakia and two hornwort genera. Relaxed purifying selection affects multiple plastid genes in mycoheterotrophic Aneura but not Buxbaumia. Plastid genome structure is nearly invariant across bryophytes, but the tufA locus, presumed lost in embryophytes, is unexpectedly retained in several mosses. CONCLUSIONS: A common unrooted tree underlies embryophyte phylogeny, [(liverworts, mosses), (hornworts, vascular plants)]; rooting inconsistency across studies likely reflects substantial distance to algal outgroups. Analyses combining genomic and transcriptomic data may be misled locally for heavily RNA-edited taxa. The Buxbaumia plastome lacks hallmarks of relaxed selection found in mycoheterotrophic Aneura. Autotrophic bryophyte plastomes, including Buxbaumia, hardly vary in overall structure.


Asunto(s)
Briófitas , Evolución Molecular , Consenso , Funciones de Verosimilitud , Filogenia
4.
Plant Cell ; 28(6): 1310-27, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27194706

RESUMEN

The anatomically simple plants that first colonized land must have acquired molecular and biochemical adaptations to drought stress. Abscisic acid (ABA) coordinates responses leading to desiccation tolerance in all land plants. We identified ABA nonresponsive mutants in the model bryophyte Physcomitrella patens and genotyped a segregating population to map and identify the ABA NON-RESPONSIVE (ANR) gene encoding a modular protein kinase comprising an N-terminal PAS domain, a central EDR domain, and a C-terminal MAPKKK-like domain. anr mutants fail to accumulate dehydration tolerance-associated gene products in response to drought, ABA, or osmotic stress and do not acquire ABA-dependent desiccation tolerance. The crystal structure of the PAS domain, determined to 1.7-Å resolution, shows a conserved PAS-fold that dimerizes through a weak dimerization interface. Targeted mutagenesis of a conserved tryptophan residue within the PAS domain generates plants with ABA nonresponsive growth and strongly attenuated ABA-responsive gene expression, whereas deleting this domain retains a fully ABA-responsive phenotype. ANR orthologs are found in early-diverging land plant lineages and aquatic algae but are absent from more recently diverged vascular plants. We propose that ANR genes represent an ancestral adaptation that enabled drought stress survival of the first terrestrial colonizers but were lost during land plant evolution.


Asunto(s)
Ácido Abscísico/farmacología , Bryopsida/efectos de los fármacos , Bryopsida/metabolismo , Proteínas de Plantas/metabolismo , Bryopsida/genética , Cristalografía por Rayos X , Desecación , Sequías , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/genética , Mutación , Presión Osmótica , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Estructura Secundaria de Proteína
5.
Am J Bot ; 106(2): 280-291, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30779448

RESUMEN

PREMISE OF THE STUDY: Studies of gene expression and polyploidy are typically restricted to characterizing differences in transcript concentration. Using diploid and autotetraploid Tolmiea, we present an integrated approach for cross-ploidy comparisons that account for differences in transcriptome size and cell density and make multiple comparisons of transcript abundance. METHODS: We use RNA spike-in standards in concert with cell size and density to identify and correct for differences in transcriptome size and compare levels of gene expression across multiple scales: per transcriptome, per cell, and per biomass. KEY RESULTS: In total, ~17% of all loci were identified as differentially expressed (DEGs) between the diploid and autopolyploid species. The per-transcriptome normalization, the method researchers typically use, captured the fewest DEGs (58% of total DEGs) and failed to detect any DEGs not found by the alternative normalizations. When transcript abundance was normalized per biomass and per cell, ~66% and ~82% of the total DEGs were recovered, respectively. The discrepancy between per-transcriptome and per-cell recovery of DEGs occurs because per-transcriptome normalizations are concentration-based and therefore blind to differences in transcriptome size. CONCLUSIONS: While each normalization enables valid comparisons at biologically relevant scales, a holistic comparison of multiple normalizations provides additional explanatory power not available from any single approach. Notably, autotetraploid loci tend to conserve diploid-like transcript abundance per biomass through increased gene expression per cell, and these loci are enriched for photosynthesis-related functions.


Asunto(s)
Diploidia , Expresión Génica , Saxifragaceae/genética , Tetraploidía , Biomasa , Tamaño de la Célula , Saxifragaceae/metabolismo , Transcriptoma
6.
Am J Bot ; 105(3): 291-301, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29603143

RESUMEN

PREMISE OF THE STUDY: For the past one billion years, green plants (Viridiplantae) have dominated global ecosystems, yet many key branches in their evolutionary history remain poorly resolved. Using the largest analysis of Viridiplantae based on plastid genome sequences to date, we examined the phylogeny and implications for morphological evolution at key nodes. METHODS: We analyzed amino acid sequences from protein-coding genes from complete (or nearly complete) plastomes for 1879 taxa, including representatives across all major clades of Viridiplantae. Much of the data used was derived from transcriptomes from the One Thousand Plants Project (1KP); other data were taken from GenBank. KEY RESULTS: Our results largely agree with previous plastid-based analyses. Noteworthy results include (1) the position of Zygnematophyceae as sister to land plants (Embryophyta), (2) a bryophyte clade (hornworts, mosses + liverworts), (3) Equisetum + Psilotaceae as sister to Marattiales + leptosporangiate ferns, (4) cycads + Ginkgo as sister to the remaining extant gymnosperms, within which Gnetophyta are placed within conifers as sister to non-Pinaceae (Gne-Cup hypothesis), and (5) Amborella, followed by water lilies (Nymphaeales), as successive sisters to all other extant angiosperms. Within angiosperms, there is support for Mesangiospermae, a clade that comprises magnoliids, Chloranthales, monocots, Ceratophyllum, and eudicots. The placements of Ceratophyllum and Dilleniaceae remain problematic. Within Pentapetalae, two major clades (superasterids and superrosids) are recovered. CONCLUSIONS: This plastid data set provides an important resource for elucidating morphological evolution, dating divergence times in Viridiplantae, comparisons with emerging nuclear phylogenies, and analyses of molecular evolutionary patterns and dynamics of the plastid genome.


Asunto(s)
Secuencia de Aminoácidos , Evolución Biológica , Genes de Plantas , Genoma de Plastidios , Filogenia , Viridiplantae/genética , Aminoácidos , Briófitas/genética , Clasificación , Cycadopsida/genética , ADN de Plantas/análisis , Conjuntos de Datos como Asunto , Evolución Molecular , Helechos/genética , Genoma de Planta , Genómica/métodos , Ginkgo biloba/genética , Gnetophyta/genética , Magnoliopsida/genética , Proteínas de Plantas/genética , Plastidios/genética
7.
Int J Mol Sci ; 18(8)2017 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-28767055

RESUMEN

Tubulin is the target for many small-molecule natural compounds, which alter microtubules dynamics, and lead to cell cycle arrest and apoptosis. One of these compounds is colchicine, a plant alkaloid produced by Colchicum autumnale. While C. autumnale produces a potent cytotoxin, colchicine, and expresses its target protein, it is immune to colchicine's cytotoxic action and the mechanism of this resistance is hitherto unknown. In the present paper, the molecular mechanisms responsible for colchicine resistance in C. autumnale are investigated and compared to human tubulin. To this end, homology models for C. autumnale α-ß tubulin heterodimer are created and molecular dynamics (MD) simulations together with molecular mechanics Poisson-Boltzmann calculations (MM/PBSA) are performed to determine colchicine's binding affinity for tubulin. Using our molecular approach, it is shown that the colchicine-binding site in C. autumnale tubulin contains a small number of amino acid substitutions compared to human tubulin. However, these substitutions induce significant reduction in the binding affinity for tubulin, and subsequently fewer conformational changes in its structure result. It is suggested that such small conformational changes are insufficient to profoundly disrupt microtubule dynamics, which explains the high resistance to colchicine by C. autumnale.


Asunto(s)
Colchicina/química , Colchicum/química , Modelos Moleculares , Tubulina (Proteína)/química , Colchicina/metabolismo , Colchicum/genética , Colchicum/metabolismo , Humanos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
8.
New Phytol ; 207(4): 1170-80, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25966996

RESUMEN

Betalain pigments are unique to the Caryophyllales and structurally and biosynthetically distinct from anthocyanins. Two key enzymes within the betalain synthesis pathway have been identified: 4,5-dioxygenase (DODA) that catalyzes the formation of betalamic acid and CYP76AD1, a cytochrome P450 gene that catalyzes the formation of cyclo-DOPA. We performed phylogenetic analyses to reveal the evolutionary history of the DODA and CYP76AD1 lineages and in the context of an ancestral reconstruction of pigment states we explored the evolution of these genes in relation to the complex evolution of pigments in Caryophylalles. Duplications within the CYP76AD1 and DODA lineages arose just before the origin of betalain pigmentation in the core Caryophyllales. The duplications gave rise to DODA-α and CYP76AD1-α isoforms that appear specific to betalain synthesis. Both betalain-specific isoforms were then lost or downregulated in the anthocyanic Molluginaceae and Caryophyllaceae. Our findings suggest a single origin of the betalain synthesis pathway, with neofunctionalization following gene duplications in the CYP76AD1 and DODA lineages. Loss of DODA-α and CYP76AD1-α in anthocyanic taxa suggests that betalain pigmentation has been lost twice in Caryophyllales, and exclusion of betalain pigments from anthocyanic taxa is mediated through gene loss or downregulation. [Correction added after online publication 13 May 2015: in the last two paragraphs of the Summary the gene name CYP761A was changed to CYP76AD1.].


Asunto(s)
Betalaínas/metabolismo , Caryophyllaceae/genética , Evolución Molecular , Genes de Plantas , Filogenia , Betalaínas/biosíntesis , Betalaínas/química , Vías Biosintéticas/genética , Sistema Enzimático del Citocromo P-450/genética , Funciones de Verosimilitud , Datos de Secuencia Molecular , Pigmentación/genética
9.
Am J Bot ; 102(7): 1089-107, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26199366

RESUMEN

UNLABELLED: • PREMISE OF THE STUDY: Understanding fern (monilophyte) phylogeny and its evolutionary timescale is critical for broad investigations of the evolution of land plants, and for providing the point of comparison necessary for studying the evolution of the fern sister group, seed plants. Molecular phylogenetic investigations have revolutionized our understanding of fern phylogeny, however, to date, these studies have relied almost exclusively on plastid data.• METHODS: Here we take a curated phylogenomics approach to infer the first broad fern phylogeny from multiple nuclear loci, by combining broad taxon sampling (73 ferns and 12 outgroup species) with focused character sampling (25 loci comprising 35877 bp), along with rigorous alignment, orthology inference and model selection.• KEY RESULTS: Our phylogeny corroborates some earlier inferences and provides novel insights; in particular, we find strong support for Equisetales as sister to the rest of ferns, Marattiales as sister to leptosporangiate ferns, and Dennstaedtiaceae as sister to the eupolypods. Our divergence-time analyses reveal that divergences among the extant fern orders all occurred prior to ∼200 MYA. Finally, our species-tree inferences are congruent with analyses of concatenated data, but generally with lower support. Those cases where species-tree support values are higher than expected involve relationships that have been supported by smaller plastid datasets, suggesting that deep coalescence may be reducing support from the concatenated nuclear data.• CONCLUSIONS: Our study demonstrates the utility of a curated phylogenomics approach to inferring fern phylogeny, and highlights the need to consider underlying data characteristics, along with data quantity, in phylogenetic studies.


Asunto(s)
Helechos/genética , Secuencia de Bases , Evolución Biológica , ADN de Plantas/química , ADN de Plantas/genética , Helechos/clasificación , Dosificación de Gen , Sitios Genéticos , Modelos Genéticos , Datos de Secuencia Molecular , Filogenia , Alineación de Secuencia , Análisis de Secuencia de ADN , Transcriptoma
10.
Ann Bot ; 113(5): 753-61, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24380843

RESUMEN

BACKGROUND AND AIMS: Cultivated flax (Linum usitatissimum) is known to have undergone a whole-genome duplication around 5-9 million years ago. The aim of this study was to investigate whether other whole-genome duplication events have occurred in the evolutionary history of cultivated flax. Knowledge of such whole-genome duplications will be important in understanding the biology and genomics of cultivated flax. METHODS: Transcriptomes of 11 Linum species were sequenced using the Illumina platform. The short reads were assembled de novo and the DupPipe pipeline was used to look for signatures of polyploidy events from the age distribution of paralogues. In addition, phylogenies of all paralogues were assembled within an estimated age window of interest. These phylogenies were assessed for evidence of a paleopolyploidy event within the genus Linum. KEY RESULTS: A previously unknown paleopolyploidy event that occurred 20-40 million years ago was discovered and shown to be specific to a clade within Linum containing cultivated flax (L. usitatissimum) and other mainly blue-flowered species. The finding was supported by two lines of evidence. First, a significant change of slope (peak) was shown in the age distribution of paralogues that was phylogenetically restricted to, and ubiquitous in, this clade. Second, a large number of paralogue phylogenies were retrieved that are consistent with a polyploidy event occurring within that clade. CONCLUSIONS: The results show the utility of multi-species transcriptomics for detecting whole-genome duplication events and demonstrate that that multiple rounds of polyploidy have been important in shaping the evolutionary history of flax. Understanding and characterizing these whole-genome duplication events will be important for future Linum research.


Asunto(s)
Evolución Biológica , Lino/genética , Genoma de Planta , Filogenia , Poliploidía , Transcriptoma , Datos de Secuencia Molecular , Análisis de Secuencia de Proteína
11.
Plant J ; 72(3): 461-73, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22757964

RESUMEN

Flax (Linum usitatissimum) is an ancient crop that is widely cultivated as a source of fiber, oil and medicinally relevant compounds. To accelerate crop improvement, we performed whole-genome shotgun sequencing of the nuclear genome of flax. Seven paired-end libraries ranging in size from 300 bp to 10 kb were sequenced using an Illumina genome analyzer. A de novo assembly, comprised exclusively of deep-coverage (approximately 94× raw, approximately 69× filtered) short-sequence reads (44-100 bp), produced a set of scaffolds with N(50) =694 kb, including contigs with N(50)=20.1 kb. The contig assembly contained 302 Mb of non-redundant sequence representing an estimated 81% genome coverage. Up to 96% of published flax ESTs aligned to the whole-genome shotgun scaffolds. However, comparisons with independently sequenced BACs and fosmids showed some mis-assembly of regions at the genome scale. A total of 43384 protein-coding genes were predicted in the whole-genome shotgun assembly, and up to 93% of published flax ESTs, and 86% of A. thaliana genes aligned to these predicted genes, indicating excellent coverage and accuracy at the gene level. Analysis of the synonymous substitution rates (K(s) ) observed within duplicate gene pairs was consistent with a recent (5-9 MYA) whole-genome duplication in flax. Within the predicted proteome, we observed enrichment of many conserved domains (Pfam-A) that may contribute to the unique properties of this crop, including agglutinin proteins. Together these results show that de novo assembly, based solely on whole-genome shotgun short-sequence reads, is an efficient means of obtaining nearly complete genome sequence information for some plant species.


Asunto(s)
Mapeo Contig/métodos , Lino/genética , Genoma de Planta/genética , Anotación de Secuencia Molecular/métodos , Secuencia de Bases , Mapeo Cromosómico , Cromosomas Artificiales Bacterianos , ADN de Plantas/química , ADN de Plantas/genética , Etiquetas de Secuencia Expresada , Biblioteca de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Análisis de Secuencia de ADN
12.
Viruses ; 14(5)2022 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-35632628

RESUMEN

A human betaretrovirus (HBRV) has been linked with the autoimmune liver disease, primary biliary cholangitis (PBC), and various cancers, including breast cancer and lymphoma. HBRV is closely related to the mouse mammary tumor virus, and represents the only exogenous betaretrovirus characterized in humans to date. Evidence of infection in patients with PBC has been demonstrated through the identification of proviral integration sites in lymphoid tissue, the major reservoir of infection, as well as biliary epithelium, which is the site of the disease process. Accordingly, we tested the hypothesis that patients with PBC harbor a transmissible betaretrovirus by co-cultivation of PBC patients' lymph node homogenates with the HS578T breast cancer line. Because of the low level of HBRV replication, betaretrovirus producing cells were subcloned to optimize viral isolation and production. Evidence of infection was provided by electron microscopy, RT-PCR, in situ hybridization, cloning of the HBRV proviral genome and demonstration of more than 3400 integration sites. Further evidence of viral transmissibility was demonstrated by infection of biliary epithelial cells. While HBRV did not show a preference for integration proximal to specific genomic features, analyses of common insertion sites revealed evidence of integration proximal to cancer associated genes. These studies demonstrate the isolation of HBRV with features similar to mouse mammary tumor virus and confirm that patients with PBC display evidence of a transmissible viral infection.


Asunto(s)
Betaretrovirus , Neoplasias de la Mama , Cirrosis Hepática Biliar , Animales , Femenino , Humanos , Cirrosis Hepática Biliar/etiología , Virus del Tumor Mamario del Ratón/genética , Ratones , Provirus/genética
13.
mBio ; 12(4): e0165621, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34281394

RESUMEN

Cation and anion channelrhodopsins (CCRs and ACRs, respectively) primarily from two algal species, Chlamydomonas reinhardtii and Guillardia theta, have become widely used as optogenetic tools to control cell membrane potential with light. We mined algal and other protist polynucleotide sequencing projects and metagenomic samples to identify 75 channelrhodopsin homologs from four channelrhodopsin families, including one revealed in dinoflagellates in this study. We carried out electrophysiological analysis of 33 natural channelrhodopsin variants from different phylogenetic lineages and 10 metagenomic homologs in search of sequence determinants of ion selectivity, photocurrent desensitization, and spectral tuning in channelrhodopsins. Our results show that association of a reduced number of glutamates near the conductance path with anion selectivity depends on a wider protein context, because prasinophyte homologs with a glutamate pattern identical to that in cryptophyte ACRs are cation selective. Desensitization is also broadly context dependent, as in one branch of stramenopile ACRs and their metagenomic homologs, its extent roughly correlates with phylogenetic relationship of their sequences. Regarding spectral tuning, we identified two prasinophyte CCRs with red-shifted spectra to 585 nm. They exhibit a third residue pattern in their retinal-binding pockets distinctly different from those of the only two types of red-shifted channelrhodopsins known (i.e., the CCR Chrimson and RubyACRs). In cryptophyte ACRs we identified three specific residue positions in the retinal-binding pocket that define the wavelength of their spectral maxima. Lastly, we found that dinoflagellate rhodopsins with a TCP motif in the third transmembrane helix and a metagenomic homolog exhibit channel activity. IMPORTANCE Channelrhodopsins are widely used in neuroscience and cardiology as research tools and are considered prospective therapeutics, but their natural diversity and mechanisms remain poorly characterized. Genomic and metagenomic sequencing projects are producing an ever-increasing wealth of data, whereas biophysical characterization of the encoded proteins lags behind. In this study, we used manual and automated patch clamp recording of representative members of four channelrhodopsin families, including a family in dinoflagellates that we report in this study. Our results contribute to a better understanding of molecular determinants of ionic selectivity, photocurrent desensitization, and spectral tuning in channelrhodopsins.


Asunto(s)
Aniones , Cationes , Channelrhodopsins/clasificación , Channelrhodopsins/genética , Criptófitas/química , Criptófitas/genética , Filogenia , Activación del Canal Iónico , Procesos Fotoquímicos
14.
mBio ; 11(2)2020 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-32317325

RESUMEN

Channelrhodopsins guide algal phototaxis and are widely used as optogenetic probes for control of membrane potential with light. "Bacteriorhodopsin-like" cation channelrhodopsins (BCCRs) from cryptophytes differ in primary structure from other CCRs, lacking usual residues important for their cation conductance. Instead, the sequences of BCCR match more closely those of rhodopsin proton pumps, containing residues responsible for critical proton transfer reactions. We report 19 new BCCRs which, together with the earlier 6 known members of this family, form three branches (subfamilies) of a phylogenetic tree. Here, we show that the conductance mechanisms in two subfamilies differ with respect to involvement of the homolog of the proton donor in rhodopsin pumps. Two BCCRs from the genus Rhodomonas generate photocurrents that rapidly desensitize under continuous illumination. Using a combination of patch clamp electrophysiology, absorption, Raman spectroscopy, and flash photolysis, we found that the desensitization is due to rapid accumulation of a long-lived nonconducting intermediate of the photocycle with unusually blue-shifted absorption with a maximum at 330 nm. These observations reveal diversity within the BCCR family and contribute to deeper understanding of their independently evolved cation channel function.IMPORTANCE Cation channelrhodopsins, light-gated channels from flagellate green algae, are extensively used as optogenetic photoactivators of neurons in research and recently have progressed to clinical trials for vision restoration. However, the molecular mechanisms of their photoactivation remain poorly understood. We recently identified cryptophyte cation channelrhodopsins, structurally different from those of green algae, which have separately evolved to converge on light-gated cation conductance. This study reveals diversity within this new protein family and describes a subclade with unusually rapid desensitization that results in short transient photocurrents in continuous light. Such transient currents have not been observed in the green algae channelrhodopsins and are potentially useful in optogenetic protocols. Kinetic UV-visible (UV-vis) spectroscopy and photoelectrophysiology reveal that the desensitization is caused by rapid accumulation of a nonconductive photointermediate in the photochemical reaction cycle. The absorption maximum of the intermediate is 330 nm, the shortest wavelength reported in any rhodopsin, indicating a novel chromophore structure.


Asunto(s)
Cationes/metabolismo , Channelrhodopsins/metabolismo , Criptófitas/fisiología , Activación del Canal Iónico , Criptófitas/clasificación , Fenómenos Electrofisiológicos , Regulación de la Expresión Génica , Potenciales de la Membrana , Mutagénesis , Optogenética , Técnicas de Placa-Clamp , Procesos Fotoquímicos , Filogenia , Análisis Espectral
15.
Nat Plants ; 6(3): 280-289, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32123350

RESUMEN

Plants are the foundation of terrestrial ecosystems, and their colonization of land was probably facilitated by mutualistic associations with arbuscular mycorrhizal fungi. Following this founding event, plant diversification has led to the emergence of a tremendous diversity of mutualistic symbioses with microorganisms, ranging from extracellular associations to the most intimate intracellular associations, where fungal or bacterial symbionts are hosted inside plant cells. Here, through analysis of 271 transcriptomes and 116 plant genomes spanning the entire land-plant diversity, we demonstrate that a common symbiosis signalling pathway co-evolved with intracellular endosymbioses, from the ancestral arbuscular mycorrhiza to the more recent ericoid and orchid mycorrhizae in angiosperms and ericoid-like associations of bryophytes. By contrast, species forming exclusively extracellular symbioses, such as ectomycorrhizae, and those forming associations with cyanobacteria, have lost this signalling pathway. This work unifies intracellular symbioses, revealing conservation in their evolution across 450 million yr of plant diversification.


Asunto(s)
Cianobacterias/fisiología , Hongos/fisiología , Genoma de Planta , Plantas/microbiología , Transducción de Señal , Simbiosis/fisiología , Transcriptoma , Evolución Biológica , Micorrizas , Fenómenos Fisiológicos de las Plantas
16.
Nat Plants ; 6(3): 259-272, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32170292

RESUMEN

Hornworts comprise a bryophyte lineage that diverged from other extant land plants >400 million years ago and bears unique biological features, including a distinct sporophyte architecture, cyanobacterial symbiosis and a pyrenoid-based carbon-concentrating mechanism (CCM). Here, we provide three high-quality genomes of Anthoceros hornworts. Phylogenomic analyses place hornworts as a sister clade to liverworts plus mosses with high support. The Anthoceros genomes lack repeat-dense centromeres as well as whole-genome duplication, and contain a limited transcription factor repertoire. Several genes involved in angiosperm meristem and stomatal function are conserved in Anthoceros and upregulated during sporophyte development, suggesting possible homologies at the genetic level. We identified candidate genes involved in cyanobacterial symbiosis and found that LCIB, a Chlamydomonas CCM gene, is present in hornworts but absent in other plant lineages, implying a possible conserved role in CCM function. We anticipate that these hornwort genomes will serve as essential references for future hornwort research and comparative studies across land plants.


Asunto(s)
Anthocerotophyta/genética , Evolución Biológica , Embryophyta/fisiología , Genoma de Planta , Rasgos de la Historia de Vida
17.
Genomics ; 91(6): 530-7, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18445516

RESUMEN

Large-insert genome analysis (LIGAN) is a broadly applicable, high-throughput technology designed to characterize genome-scale structural variation. Fosmid paired-end sequences and DNA fingerprints from a query genome are compared to a reference sequence using the Genomic Variation Analysis (GenVal) suite of software tools to pinpoint locations of insertions, deletions, and rearrangements. Fosmids spanning regions that contain new structural variants can then be sequenced. Clonal pairs of Pseudomonas aeruginosa isolates from four cystic fibrosis patients were used to validate the LIGAN technology. Approximately 1.5 Mb of inserted sequences were identified, including 743 kb containing 615 ORFs that are absent from published P. aeruginosa genomes. Six rearrangement breakpoints and 220 kb of deleted sequences were also identified. Our study expands the "genome universe" of P. aeruginosa and validates a technology that complements emerging, short-read sequencing methods that are better suited to characterizing single-nucleotide polymorphisms than structural variation.


Asunto(s)
Fibrosis Quística/microbiología , Dermatoglifia del ADN/métodos , Análisis Mutacional de ADN/métodos , Genoma Bacteriano , Pseudomonas aeruginosa/genética , Secuencia de Bases , Variación Genética , Humanos , Datos de Secuencia Molecular , Mutagénesis Insercional , Pseudomonas aeruginosa/aislamiento & purificación , Recombinación Genética , Eliminación de Secuencia
18.
Microbiome ; 7(1): 1, 2019 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-30606251

RESUMEN

BACKGROUND: Inflammatory bowel diseases (IBD) are a group of complex and multifactorial disorders with unknown etiology. Chronic intestinal inflammation develops against resident intestinal bacteria in genetically susceptible hosts. We hypothesized that host intestinal immunoglobulin (Ig) G can be used to identify bacteria involved in IBD pathogenesis. RESULTS: IgG-bound and -unbound microorganisms were collected from 32 pediatric terminal ileum aspirate washes during colonoscopy [non-IBD (n = 10), Crohn disease (n = 15), and ulcerative colitis (n = 7)], and composition was assessed using the Illumina MiSeq platform. In vitro analysis of invasive capacity was evaluated by fluorescence in situ hybridization and gentamicin invasion assay; immune activation was measured by qPCR. Despite considerable inter-individual variations, IgG binding favored specific and unique mucosa-associated species in pediatric IBD patients. Burkholderia cepacia, Flavonifractor plautii, and Rumminococcus sp. demonstrated increased IgG binding, while Pseudomonas ST29 demonstrated reduced IgG binding, in IBD. In vitro validation confirmed that B. cepacia, F. plautii, and Rumminococcus display invasive potential while Pseudomonas protogens did not. CONCLUSION: Using IgG as a marker of pathobionts in larger patient cohorts to identify microbes and elucidate their role in IBD pathogenesis will potentially underpin new strategies to facilitate development of novel, targeted diagnostic, and therapeutic approaches. Interestingly, this method can be used beyond the scope of this manuscript to evaluate altered gut pathobionts in a number of diseases associated with altered microbiota including arthritis, obesity, diabetes mellitus, alcoholic liver disease, cirrhosis, metabolic syndrome, and carcinomas.


Asunto(s)
Bacterias/clasificación , Inmunoglobulina G/metabolismo , Enfermedades Inflamatorias del Intestino/cirugía , Metagenómica/métodos , Adolescente , Bacterias/inmunología , Niño , Preescolar , Colonoscopía , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Hibridación Fluorescente in Situ , Enfermedades Inflamatorias del Intestino/inmunología , Enfermedades Inflamatorias del Intestino/microbiología , Intestinos/inmunología , Masculino , Filogenia
19.
eNeuro ; 5(3)2018.
Artículo en Inglés | MEDLINE | ID: mdl-30027111

RESUMEN

Optogenetic inhibition of specific neuronal types in the brain enables analysis of neural circuitry and is promising for the treatment of a number of neurological disorders. Anion channelrhodopsins (ACRs) from the cryptophyte alga Guillardia theta generate larger photocurrents than other available inhibitory optogenetic tools, but more rapid channels are needed for temporally precise inhibition, such as single-spike suppression, of high-frequency firing neurons. Faster ACRs have been reported, but their potential advantages for time-resolved inhibitory optogenetics have not so far been verified in neurons. We report RapACR, nicknamed so for "rapid," an ACR from Rhodomonas salina, that exhibits channel half-closing times below 10 ms and achieves equivalent inhibition at 50-fold lower light intensity in lentivirally transduced cultured mouse hippocampal neurons as the second-generation engineered Cl--conducting channelrhodopsin iC++. The upper limit of the time resolution of neuronal silencing with RapACR determined by measuring the dependence of spiking recovery after photoinhibition on the light intensity was calculated to be 100 Hz, whereas that with the faster of the two G. theta ACRs was 13 Hz. Further acceleration of RapACR channel kinetics was achieved by site-directed mutagenesis of a single residue in transmembrane helix 3 (Thr111 to Cys). We also show that mutation of another ACR (Cys to Ala at the same position) with a greatly extended lifetime of the channel open state acts as a bistable photochromic tool in mammalian neurons. These molecules extend the time domain of optogenetic neuronal silencing while retaining the high light sensitivity of Guillardia ACRs.


Asunto(s)
Channelrhodopsins/fisiología , Activación del Canal Iónico , Neuronas/fisiología , Optogenética/métodos , Potenciales de Acción , Animales , Aniones , Células Cultivadas , Channelrhodopsins/genética , Criptófitas , Células HEK293 , Hipocampo/fisiología , Humanos , Ratones
20.
Nat Plants ; 4(7): 460-472, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29967517

RESUMEN

Ferns are the closest sister group to all seed plants, yet little is known about their genomes other than that they are generally colossal. Here, we report on the genomes of Azolla filiculoides and Salvinia cucullata (Salviniales) and present evidence for episodic whole-genome duplication in ferns-one at the base of 'core leptosporangiates' and one specific to Azolla. One fern-specific gene that we identified, recently shown to confer high insect resistance, seems to have been derived from bacteria through horizontal gene transfer. Azolla coexists in a unique symbiosis with N2-fixing cyanobacteria, and we demonstrate a clear pattern of cospeciation between the two partners. Furthermore, the Azolla genome lacks genes that are common to arbuscular mycorrhizal and root nodule symbioses, and we identify several putative transporter genes specific to Azolla-cyanobacterial symbiosis. These genomic resources will help in exploring the biotechnological potential of Azolla and address fundamental questions in the evolution of plant life.


Asunto(s)
Evolución Biológica , Cianobacterias , Helechos/genética , Genoma de Planta/genética , Simbiosis , Helechos/microbiología , Duplicación de Gen/genética , Genes de Plantas/genética , Filogenia , Simbiosis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA