Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Semin Cell Dev Biol ; 101: 41-50, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31408699

RESUMEN

Autophagy is a conserved intracellular degradation process enclosing the bulk of cytosolic components for lysosomal degradation to maintain cellular homeostasis. Accumulating evidences showed that a specialized form of autophagy, known as xenophagy, could serve as an innate immune response to defend against pathogens invading inside the host cells. Correspondingly, infectious pathogens have developed a variety of strategies to disarm xenophagy, leading to a prolonged and persistent intracellular colonization. In this review, we first summarize the current knowledge about the general mechanisms of intracellular bacterial infections and xenophagy. We then focus on the ongoing battle between these two processes.


Asunto(s)
Autofagia/inmunología , Infecciones Bacterianas/inmunología , Animales , Infecciones Bacterianas/patología , Humanos , Inmunidad Innata/inmunología
2.
Int J Mol Sci ; 23(1)2021 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-35008727

RESUMEN

The invasion of skin tissue by Staphylococcus aureus is mediated by mechanisms that involve sequential breaching of the different stratified layers of the epidermis. Induction of cell death in keratinocytes is a measure of virulence and plays a crucial role in the infection progression. We established a 3D-organotypic keratinocyte-fibroblast co-culture model to evaluate whether a 3D-skin model is more effective in elucidating the differences in the induction of cell death by Methicillin-resistant Staphylococcus aureus (MRSA) than in comparison to 2D-HaCaT monolayers. We investigated the difference in adhesion, internalization, and the apoptotic index in HaCaT monolayers and our 3D-skin model using six strains of MRSA representing different clonal types, namely, ST8, ST30, ST59, ST22, ST45 and ST239. All the six strains exhibited internalization in HaCaT cells. Due to cell detachment, the invasion study was limited up to two and a half hours. TUNEL assay showed no significant difference in the cell death induced by the six MRSA strains in the HaCaT cells. Our 3D-skin model provided a better insight into the interactions between the MRSA strains and the human skin during the infection establishment as we could study the infection of MRSA in our skin model up to 48 h. Immunohistochemical staining together with TUNEL assay in the 3D-skin model showed co-localization of the bacteria with the apoptotic cells demonstrating the induction of apoptosis by the bacteria and revealed the variation in bacterial transmigration among the MRSA strains. The strain representing ST59 showed maximum internalization in HaCaT cells and the maximum cell death as measured by Apoptotic index in the 3D-skin model. Our results show that 3D-skin model might be more likely to imitate the physiological response of skin to MRSA infection than 2D-HaCaT monolayer keratinocyte cultures and will enhance our understanding of the difference in pathogenesis among different MRSA strains.


Asunto(s)
Técnicas de Cultivo de Célula , Fibroblastos/microbiología , Queratinocitos/microbiología , Staphylococcus aureus Resistente a Meticilina/fisiología , Modelos Biológicos , Piel/microbiología , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/patología , Apoptosis , Adhesión Celular , Muerte Celular , Endocitosis , Células HaCaT , Humanos
3.
Pathogens ; 11(4)2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35456061

RESUMEN

We investigated the molecular epidemiology of Streptococcus agalactiae (Group B Streptococcus, GBS) from carriage in a cohort of pregnant mothers and their respective newborns in a Teaching Hospital in Sri Lanka. GBS vaginal carriage was assessed on pregnant mothers at pre-delivery (n = 250), post-delivery (n = 130), and from peri-rectal swabs of neonates (n = 159) in a prospective study. All colonizing, non-duplicate GBS isolates (n = 60) were analyzed for antimicrobial susceptibilities, capsular serotyping, and whole-genome sequencing (WGS). The percentage of GBS carriage in mothers in the pre-delivery and post-delivery cohorts were 11.2% (n = 28) and 19.2% (n = 25), respectively, and 4.4% (n = 7) in neonates. GBS isolates predominantly belonged to serotype VI (17/60, 28.3%). The isolates spanned across 12 sequence types (STs), with ST1 (24/60, 40%) being the most predominant ST. Concomitant resistance to erythromycin, tetracyclines, and gentamicin was observed in eight strains (13.3%). WGS revealed the presence of antimicrobial resistance genes including ermA (5/60), mefA (1/60), msrD (1/60), and tetLMO (2/60, 28/60, and 1/60, respectively) among 60 strains. The study provides insight into the diversity of vaccine targets of GBS since serotype VI is yet to be covered in the vaccine development program.

4.
Antibiotics (Basel) ; 11(3)2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35326860

RESUMEN

We report the antimicrobial resistance of 191 fish and 61 pork Group B Streptococcus (GBS) procured from Hong Kong wet markets. Two-hundred-and-fifty-two GBS strains were isolated from 992 freshwater fish and 361 pig offal during 2016-2019. The strains were isolated from homogenised samples and plated on selective media, followed by identification through MALDI-TOF-MS. Molecular characterisation, an antibiotic susceptibility test, and biofilm formation were performed on the strains. The isolation rates of the fish GBS and pig GBS were 19.3% (191 strains from 992 freshwater fish) and 16.9% (61 strains from 361 pig organs), respectively. The fish GBS was predominantly serotype Ia, ST7, while pig GBS was serotype III, ST651 (45 strains). An antibiotic susceptibility test revealed that the fish GBS were mostly antibiotic-sensitive, while the pig GBS were multidrug-resistant. A biofilm formation experiment showed that over 71% of fish GBS and all pig GBS had moderate biofilm formation ability. In general, the prevalence rate of GBS in animals and the multidrug resistance phenotype presented in the strains raise concerns about its zoonotic potential and effects on public health.

6.
Microbiol Spectr ; 9(1): e0024821, 2021 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-34346743

RESUMEN

Nontyphoidal Salmonella (NTS) gastroenteritis in children remains a significant burden on health care and constitutes a majority of all admissions for Salmonella infections in public hospitals in Hong Kong. In this prospective study, 41% of 241 children hospitalized with gastroenteritis from three public hospitals during 2019 were culture confirmed to have NTS infection. These Salmonella isolates were whole-genome sequenced and in silico predicted for their serovars/serotypes using the Salmonella In Silico Typing Resource (SISTR) and SeqSero1, and the antimicrobial resistance (AMR) genes were determined. Phylogenetic analysis revealed three major clades belonging to Salmonella enterica serovar Enteritidis sequence type 11 (ST11) (43%), multidrug-resistant (MDR) S. Typhimurium ST19 (12%) and its monophasic variant ST34 (25%), and mostly singletons of 15 other serovars. MDR S. Typhimurium and its variant were more common in infants <24 months of age and possessed genotypic resistance to five antimicrobial agents, including ampicillin (A), chloramphenicol (C), aminoglycosides (Am), sulfonamides (Su), and tetracyclines (T). Older children were more often infected with S. Enteritidis, which possessed distinct genotypic resistance to AAmSu and fluoroquinolones. In addition, 3% of the isolates possessed extended-spectrum beta-lactamase (ESBL) CTX-M genes, while one isolate (1%) harboring the carbapenemase gene blaNDM-1 was identified. Our findings provide a more complete genomic epidemiological insight into NTS causing gastroenteritis and identify a wider spectrum of determinants of resistance to third-generation beta-lactams and carbapenems, which are often not readily recognized. With high rates of multidrug-resistant NTS from studies in the Asia-Pacific region, the rapid and reliable determination of serovars and resistance determinants using whole-genome sequencing (WGS) is invaluable for enhancing public health interventions for infection prevention and control. IMPORTANCE Nontyphoidal Salmonella (NTS) gastroenteritis is a foodborne disease with a large global burden. Antimicrobial resistance (AMR) among foodborne pathogens is an important public health concern, and multidrug-resistant (MDR) Salmonella is prevalent in Southeast Asia and China. Using whole-genome sequencing, this study highlights the relationship of the MDR Salmonella serotypes and the diverse range of Salmonella genotypes that contaminate our food sources and contribute to disease in this locality. The findings update our understanding of Salmonella epidemiology and associated MDR determinants to enhance the tracking of foodborne pathogens for public health and food safety.


Asunto(s)
Gastroenteritis/microbiología , Infecciones por Salmonella/microbiología , Salmonella enterica/genética , Adulto , Antibacterianos/farmacología , Preescolar , Farmacorresistencia Bacteriana Múltiple , Femenino , Gastroenteritis/terapia , Genoma Bacteriano , Genómica , Hospitalización , Humanos , Lactante , Pruebas de Sensibilidad Microbiana , Filogenia , Estudios Prospectivos , Infecciones por Salmonella/terapia , Salmonella enterica/clasificación , Salmonella enterica/efectos de los fármacos , Salmonella enterica/aislamiento & purificación
7.
Int J Antimicrob Agents ; 58(5): 106430, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34525401

RESUMEN

An active, territory-wide, CPE surveillance program implemented from 2011 showed increasing levels of carbapenemase-producing Enterobacteriaceae (CPE) isolates from patients in Hong Kong hospitals. The molecular epidemiology of 567 CPE from patients of three of seven public hospital clusters in Hong Kong are described. During a 7-year period, the incidence of CPE isolation increased from 0.05 to 9.6/100 000 patient-days. The carbapenemase genes identified were polyclonal, including blaKPC, blaNDM and blaIMP, which were mainly associated with hospitalization overseas in previous years. However, increasing CPE isolation from patients without hospitalization overseas occurred in 2015, with blaNDM (52.6%) predominant followed by blaIMP (30.0%). Escherichia coli (46.4%) and Klebsiella spp. (38.3%) were the dominant species. Whole-genome sequencing was performed on 169 representative isolates with a combination of short and long reads using Illumina and Nanopore technology. Two distinct lineages of blaKPC-2-positive Klebsiella pneumoniae (ST11 and ST258) were identified with ST11 carrying yersiniabactin gene ybt-9 on ICEKp3. ST131 E. coli producing IMP-4 was present throughout the study period. The blaNDM and blaIMP genes were mainly carried in IncX3 and IncN-ST7 plasmids, respectively. blaOXA-48-like gene was carried in the IncX3 plasmid in E. coli and in the ColKP3 plasmid in K. pneumoniae. A lineage of K. pneumoniae with blaNDM-1 plus blaOXA-232 in distinct plasmids of IncF1B/IncHI1B was identified and associated with prior hospitalization overseas. This study highlights the threat of multiple types of CPE, with the predominance of blaNDM and blaIMP among CPE in our hospitals. Enhanced containment strategies are needed to mitigate the trend of rapidly rising CPE in healthcare settings.


Asunto(s)
Proteínas Bacterianas/genética , Enterobacteriaceae Resistentes a los Carbapenémicos/efectos de los fármacos , Enterobacteriaceae Resistentes a los Carbapenémicos/genética , Farmacorresistencia Bacteriana Múltiple/genética , Infecciones por Enterobacteriaceae/tratamiento farmacológico , beta-Lactamasas/genética , Antibacterianos/uso terapéutico , Enterobacteriaceae Resistentes a los Carbapenémicos/aislamiento & purificación , Infecciones por Enterobacteriaceae/epidemiología , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Escherichia coli/aislamiento & purificación , Genoma Bacteriano/genética , Hong Kong/epidemiología , Humanos , Secuencias Repetitivas Esparcidas/genética , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/aislamiento & purificación , Pruebas de Sensibilidad Microbiana , Tipificación de Secuencias Multilocus , Plásmidos/genética , Secuenciación Completa del Genoma
8.
Microorganisms ; 8(7)2020 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-32708529

RESUMEN

Penicillin non-susceptible Streptococcus agalactiae (PEN-NS GBS) has been increasingly reported, with multidrug-resistant (MDR) GBS documented in Japan. Here we identified two PEN-NS GBS strains during our surveillance studies: one from a patient's wound and the other from a tilapia. The patient's GBS (H21) and fish GBS (F49) were serotyped and tested for antibiotic susceptibility. Whole-genome sequencing was performed to find the sequence type, antimicrobial resistance genes, and mutations in penicillin-binding proteins (PBPs) and fluoroquinolone (FQ) resistance genes. H21 and F49 belonged to ST651, serotype Ib, and ST7, serotype Ia, respectively. H21 showed PEN and cefotaxime minimum inhibitory concentrations (MICs) of 2.0 mg/L. F49 showed PEN MIC 0.5 mg/L. H21 was MDR with ermB, lnuB, tetS, ant6-Ia, sat4a, and aph3-III antimicrobial resistance genes observed. Alignment of PBPs showed the combination of PBP1B (A95D) and 2B mutations (V80A, S147A, S160A) in H21 and a novel mutation in F49 at N192S in PBP2B. Alignment of FQ-resistant determinants revealed mutation sites on gyrA, gyrB, and parC and E in H21. To our knowledge, this is the first report of GBS isolates with such high penicillin and cefotaxime MICs. This raises the concern of emergence of MDR and PEN-NS GBS in and beyond healthcare facilities.

9.
mSphere ; 5(2)2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-32295872

RESUMEN

This study identified and characterized extended-spectrum-ß-lactamase-producing Enterobacteriaceae (ESBL-E) and carbapenemase-producing Enterobacteriaceae (CPE) from farmed freshwater fish and pig offal procured from the wet markets across Hong Kong. During March 2018 to January 2019, 730 food animal samples, namely, 213 snakehead fish, 198 black carp, and 339 pig organs, were examined. ESBL-E and CPE were isolated from the homogenized samples plated on selective media and identified by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS). All ESBL-E and CPE strains were tested for antimicrobial susceptibilities. ESBL-E and CPE gene groups were detected by multiplex PCR and blaCTX-M-1/-2/-9 group strains were Sanger sequenced for CTX-M types. All CPE isolates were whole-genome sequenced. Isolation of ESBL-E from pig small (52.4%) and large (50%) intestines and tongues (25.1%) was significantly (P < 0.05) more frequent than from snakehead (0.94%) and black carp (0.5%) fish. ESBL-E isolates (n = 171) revealed resistance rates of 16.3%, 29.8%, 35.6%, 53.2%, 55.0%, and 100% to piperacillin-tazobactam, amoxicillin-clavulanate, cefepime, gentamicin, ciprofloxacin, and ampicillin, respectively, whereas CPE (n = 28) were resistant to almost all the antibiotics tested except gentamicin, ciprofloxacin, and fosfomycin. The predominant ESBL gene groups in fishes and pig offals were blaCTX, where blaCTX-M-55 was the major subtype in the blaCTX-M-1 group (64.4% of isolates in the group). blaCTX-M-14/-17 was the major genotype in the blaCTX-M-9 group (32.2%). All CPE strains possessed blaNDM genes. High rates of ESBL-E and CPE were identified in food animals from wet markets of Hong Kong, which may serve as a potential reservoir of antimicrobial-resistant genes and increase the challenges in tackling antimicrobial resistance beyond health care settings.IMPORTANCE Extended-spectrum-ß-lactamase-producing Enterobacteriaceae (ESBL-E) and carbapenemase-producing Enterobacteriaceae (CPE) are of global health importance, yet there is a paucity of surveillance studies on food animals in Hong Kong. Here, we report a high prevalence of ESBL-E (ranging from 0.5% to 52.4%) and CPE (0% to 9.9%) from various food animal samples procured from wet markets across Hong Kong. All CPE strains were characterized by whole-genome sequencing and possessed NDM-1 and -5 genes and other resistance determinants. Given the increased resistance profile of these strains, this study highlights the emerging threat of ESBL-E and CPE disseminated in farmed animals. Furthermore, our data enriched our understanding of antibiotic resistance reservoirs from a One Health perspective that can widely spread across various niches, beyond health care settings.


Asunto(s)
Enterobacteriaceae Resistentes a los Carbapenémicos/efectos de los fármacos , Farmacorresistencia Bacteriana Múltiple , Peces/microbiología , Carne de Cerdo/microbiología , Animales , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Enterobacteriaceae Resistentes a los Carbapenémicos/genética , Enterobacteriaceae Resistentes a los Carbapenémicos/aislamiento & purificación , Granjas , Microbiología de Alimentos , Agua Dulce/microbiología , Genotipo , Hong Kong/epidemiología , Pruebas de Sensibilidad Microbiana , Prevalencia , Alimentos Marinos/microbiología , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Porcinos , Secuenciación Completa del Genoma , beta-Lactamasas/genética
10.
J Med Microbiol ; 57(Pt 3): 316-323, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18287294

RESUMEN

TUBEX (IDL Biotech) is a 5 min semiquantitative colorimetric test for typhoid fever, a widely endemic disease. TUBEX detects anti-Salmonella O9 antibodies from a patient's serum by the ability of these antibodies to inhibit the binding between an indicator antibody-bound particle and a magnetic antigen-bound particle. Herein, we report that TUBEX could also be used to specifically detect soluble O9 lipopolysaccharide in antigen-spiked buffer by the ability of the antigen to inhibit the same binding between the particles. Sensitivity of antigen detection was improved (8-31 mug ml(-1)) by using a modified protocol in which the test sample was mixed with the indicator particles first, rather than with the magnetic particles as for antibody detection. The antigen was also detectable in spiked serum and urine samples, albeit less well (2-4-fold) than in buffer generally. However, no antigen was detected from six typhoid sera examined, all of which had anti-O9 antibodies. In addition, whole organisms of Salmonella Typhi (15 strains) and Salmonella Enteritidis (6 strains) (both O9(+) Salmonella), grown in simulated blood broths or on MacConkey agar, were also detectable by TUBEX when suspended at >9 x 10(8) organisms ml(-1). Expectedly, Salmonella Paratyphi A (7 strains), Salmonella Typhimurium (1 strain) and Escherichia coli (2 strains) were negative in the test. Thus, the same TUBEX kit may be used in several ways both serologically and microbiologically for the rapid diagnosis of typhoid fever. However, validation of the newer applications will require the systematic examination of real patient and laboratory materials.


Asunto(s)
Anticuerpos Antibacterianos/sangre , Lipopolisacáridos/análisis , Antígenos O/análisis , Juego de Reactivos para Diagnóstico , Salmonella typhi/inmunología , Salmonella typhi/aislamiento & purificación , Especificidad de Anticuerpos , Humanos , Lipopolisacáridos/sangre , Lipopolisacáridos/inmunología , Lipopolisacáridos/orina , Antígenos O/sangre , Antígenos O/inmunología , Antígenos O/orina , Salmonella enteritidis/inmunología , Salmonella enteritidis/aislamiento & purificación , Sensibilidad y Especificidad , Fiebre Tifoidea/diagnóstico , Fiebre Tifoidea/microbiología , Orina/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA