Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Brain ; 145(9): 3022-3034, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-35759269

RESUMEN

TAF8 is part of the transcription factor II D complex, composed of the TATA-binding protein and 13 TATA-binding protein-associated factors (TAFs). Transcription factor II D is the first general transcription factor recruited at promoters to assemble the RNA polymerase II preinitiation complex. So far disorders related to variants in 5 of the 13 subunits of human transcription factor II D have been described. Recently, a child with a homozygous c.781-1G>A mutation in TAF8 has been reported. Here we describe seven further patients with mutations in TAF8 and thereby confirm the TAF8 related disorder. In two sibling patients, we identified two novel compound heterozygous TAF8 splice site mutations, c.45+4A > G and c.489G>A, which cause aberrant splicing as well as reduced expression and mislocalization of TAF8. In five further patients, the previously described c.781-1G > A mutation was present on both alleles. The clinical phenotype associated with the different TAF8 mutations is characterized by severe psychomotor retardation with almost absent development, feeding problems, microcephaly, growth retardation, spasticity and epilepsy. Cerebral imaging showed hypomyelination, a thin corpus callosum and brain atrophy. Moreover, repeated imaging in the sibling pair demonstrated progressive cerebral and cerebellar atrophy. Consistently, reduced N-acetylaspartate, a marker of neuronal viability, was observed on magnetic resonance spectroscopy. Further review of the literature shows that mutations causing a reduced expression of transcription factor II D subunits have an overlapping phenotype of microcephaly, developmental delay and intellectual disability. Although transcription factor II D plays an important role in RNA polymerase II transcription in all cells and tissues, the symptoms associated with such defects are almost exclusively neurological. This might indicate a specific vulnerability of neuronal tissue to widespread deregulation of gene expression as also seen in Rett syndrome or Cornelia de Lange syndrome.


Asunto(s)
Microcefalia , Enfermedades Neurodegenerativas , Factor de Transcripción TFIID , Atrofia/complicaciones , Niño , Humanos , Microcefalia/genética , Mutación , Enfermedades Neurodegenerativas/complicaciones , Fenotipo , ARN Polimerasa II , Proteína de Unión a TATA-Box/genética , Factor de Transcripción TFIID/genética
2.
Int J Mol Sci ; 24(14)2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37511424

RESUMEN

Rett syndrome (RTT), a severe X-linked neurodevelopmental disorder, is primarily caused by mutations in the methyl CpG binding protein 2 gene (MECP2). Over 35% RTT patients carry nonsense mutation in MECP2, making it a suitable candidate disease for nonsense suppression therapy. In our previous study, gentamicin was found to induce readthrough of MECP2 nonsense mutations with modest efficiency. Given the recent discovery of readthrough enhancers, CDX compounds, we herein evaluated the potentiation effect of CDX5-1, CDX5-288, and CDX6-180 on gentamicin-mediated readthrough efficiency in transfected HeLa cell lines bearing the four most common MECP2 nonsense mutations. We showed that all three CDX compounds potentiated gentamicin-mediated readthrough and increased full-length MeCP2 protein levels in cells expressing the R168X, R255X, R270X, and R294X nonsense mutations. Among all three CDX compounds, CDX5-288 was the most potent enhancer and enabled the use of reduced doses of gentamicin, thus mitigating the toxicity. Furthermore, we successfully demonstrated the upregulation of full-length Mecp2 protein expression in fibroblasts derived from Mecp2R255X/Y mice through combinatorial treatment. Taken together, findings demonstrate the feasibility of this combinatorial approach to nonsense suppression therapy for a subset of RTT patients.


Asunto(s)
Síndrome de Rett , Humanos , Ratones , Animales , Síndrome de Rett/tratamiento farmacológico , Síndrome de Rett/genética , Proteína 2 de Unión a Metil-CpG/genética , Proteína 2 de Unión a Metil-CpG/metabolismo , Gentamicinas/farmacología , Codón sin Sentido , Células HeLa , Mutación
3.
Proc Natl Acad Sci U S A ; 114(21): E4261-E4270, 2017 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-28484008

RESUMEN

The myelination of axons in peripheral nerves requires precisely coordinated proliferation and differentiation of Schwann cells (SCs). We found that the activity of the mechanistic target of rapamycin complex 1 (mTORC1), a key signaling hub for the regulation of cellular growth and proliferation, is progressively extinguished as SCs differentiate during nerve development. To study the effects of different levels of sustained mTORC1 hyperactivity in the SC lineage, we disrupted negative regulators of mTORC1, including TSC2 or TSC1, in developing SCs of mutant mice. Surprisingly, the phenotypes ranged from arrested myelination in nerve development to focal hypermyelination in adulthood, depending on the level and timing of mTORC1 hyperactivity. For example, mice lacking TSC2 in developing SCs displayed hyperproliferation of undifferentiated SCs incompatible with normal myelination. However, these defects and myelination could be rescued by pharmacological mTORC1 inhibition. The subsequent reconstitution of SC mTORC1 hyperactivity in adult animals resulted in focal hypermyelination. Together our data suggest a model in which high mTORC1 activity promotes proliferation of immature SCs and antagonizes SC differentiation during nerve development. Down-regulation of mTORC1 activity is required for terminal SC differentiation and subsequent initiation of myelination. In distinction to this developmental role, excessive SC mTORC1 activity stimulates myelin growth, even overgrowth, in adulthood. Thus, our work delineates two distinct functions of mTORC1 in the SC lineage essential for proper nerve development and myelination. Moreover, our studies show that SCs retain their plasticity to myelinate and remodel myelin via mTORC1 throughout life.


Asunto(s)
Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Vaina de Mielina/metabolismo , Células de Schwann/citología , Sirolimus/farmacología , Proteínas Supresoras de Tumor/genética , Animales , Axones/metabolismo , Puntos de Control del Ciclo Celular/genética , Línea Celular , Plasticidad de la Célula/genética , Proliferación Celular/genética , Eliminación de Gen , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína 1 del Complejo de la Esclerosis Tuberosa , Proteína 2 del Complejo de la Esclerosis Tuberosa
4.
Nat Neurosci ; 23(10): 1215-1228, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32807950

RESUMEN

Axon degeneration is a hallmark of many neurodegenerative disorders. The current assumption is that the decision of injured axons to degenerate is cell-autonomously regulated. Here we show that Schwann cells (SCs), the glia of the peripheral nervous system, protect injured axons by virtue of a dramatic glycolytic upregulation that arises in SCs as an inherent adaptation to axon injury. This glycolytic response, paired with enhanced axon-glia metabolic coupling, supports the survival of axons. The glycolytic shift in SCs is largely driven by the metabolic signaling hub, mammalian target of rapamycin complex 1, and the downstream transcription factors hypoxia-inducible factor 1-alpha and c-Myc, which together promote glycolytic gene expression. The manipulation of glial glycolytic activity through this pathway enabled us to accelerate or delay the degeneration of perturbed axons in acute and subacute rodent axon degeneration models. Thus, we demonstrate a non-cell-autonomous metabolic mechanism that controls the fate of injured axons.


Asunto(s)
Axones/metabolismo , Axones/patología , Ganglios Espinales/metabolismo , Glucólisis , Degeneración Nerviosa/metabolismo , Células de Schwann/metabolismo , Transducción de Señal , Animales , Células Cultivadas , Femenino , Ganglios Espinales/patología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Masculino , Ratones , Proteínas Proto-Oncogénicas c-myc/metabolismo , Células de Schwann/patología , Serina-Treonina Quinasas TOR/metabolismo
5.
Commun Integr Biol ; 11(1): e1433441, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29497474

RESUMEN

During nerve development, Schwann cells (SCs) build multilayered myelin sheaths around axons to accelerate nerve conduction. The mechanistic target of rapamycin complex 1 (mTORC1) downstream of PI3K/AKT signaling lately emerged as a central anabolic regulator of myelination. Using mutant mice with sustained mTORC1 hyperactivity in developing SCs we recently uncovered that mTORC1 impedes developmental myelination by promoting proliferation of immature SCs while antagonizing SC differentiation. In contrast, mTORC1 stimulates myelin production, rather than SC proliferation, in already differentiated SCs. Importantly, these diametrical mTORC1 functions were unmasked under settings of greatly suppressed AKT signaling. Here we demonstrate, inter alia, additional mechanisms of feedback inhibition of AKT by mTORC1, such as strikingly elevated PTEN levels in SCs with disruption of the mTORC1 inhibitory complex, TSC1/2. These data lead us to propose a model wherein mTORC1 and AKT have distinct roles in developing SCs that have to be precisely coordinated for normal myelinogenesis.

6.
Brain Struct Funct ; 223(4): 1667-1681, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29189906

RESUMEN

The inferior olive (IO) is the sole source of the climbing fibers innervating the cerebellar cortex. We have previously shown both individual differences in the size and folding pattern of the principal nucleus (IOpr) in humans as well as in the expression of different proteins in IOpr neurons. This high degree of variability was not present in chimpanzee samples. The neurochemical differences might reflect static differences among individuals, but might also reflect age-related processes resulting in alterations of protein synthesis. Several observations support the latter idea. First, accumulation of lipofuscin, the "age pigment" is well documented in IOpr neurons. Second, there are silver- and abnormal tau-immunostained intraneuronal granules in IOpr neurons (Ikeda et al. Neurosci Lett 258:113-116, 1998). Finally, Olszewski and Baxter (Cytoarchitecture of the human brain stem, Second edn. Karger, Basel, 1954) observed an apparent loss of IOpr neurons in older individuals. We have further investigated the possibility of age-related changes in IOpr neurons using silver- and immunostained sections. We found silver-labeled intraneuronal granules in neurons of the IOpr in all human cases studied (n = 17, ages 25-71). We did not, however, confirm immunostaining with antibodies to abnormal tau. There was individual variability in the density of neurons as well as in the expression of the calcium-binding protein calretinin. In the chimpanzee, there were neither silver-stained intraneuronal granules nor irregularities in immunostaining. Overall, the data support the hypothesis that in some, but not all, humans there are functional changes in IOpr neurons and ultimately cell death. Neurochemical changes of IOpr neurons may contribute to age-related changes in motor and cognitive skills mediated by the cerebellum.


Asunto(s)
Individualidad , Neuronas/fisiología , Núcleo Olivar/citología , Adulto , Factores de Edad , Anciano , Análisis de Varianza , Animales , Calbindina 2/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neuronas/ultraestructura , Pan troglodytes , Tinción con Nitrato de Plata , Proteínas tau/metabolismo
7.
Anat Rec (Hoboken) ; 301(5): 862-886, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29236365

RESUMEN

The mammalian cochlear nuclei (CN) consist of two major subdivisions, the dorsal (DCN) and ventral (VCN) nuclei. We previously reported differences in the structural and neurochemical organization of the human DCN from that in several other species. Here we extend this analysis to the VCN, considering both the organization of subdivisions and the types and distributions of neurons. Classically, the VCN in mammals is composed of two subdivisions, the anteroventral (VCA) and posteroventral cochlear nuclei (VCP). Anatomical and electrophysiological data in several species have defined distinct neuronal types with different distributions in the VCA and VCP. We asked if VCN subdivisions and anatomically defined neuronal types might be distinguished by patterns of protein expression in humans. We also asked if the neurochemical characteristics of the VCN are the same in humans as in other mammalian species, analyzing data from chimpanzees, macaque monkeys, cats, rats and chinchillas. We examined Nissl- and immunostained sections, using antibodies that had labeled neurons in other brainstem nuclei in humans. Nissl-stained sections supported the presence of both VCP and VCA in humans and chimpanzees. However, patterns of protein expression did not differentiate classes of neurons in humans; neurons of different soma shapes and dendritic configurations all expressed the same proteins. The patterns of immunostaining in macaque monkey, cat, rat, and chinchilla were different from those in humans and chimpanzees and from each other. The results may correlate with species differences in auditory function and plasticity. Anat Rec, 301:862-886, 2018. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Núcleo Coclear/metabolismo , Audición/fisiología , Neuronas/metabolismo , Anciano , Animales , Calbindina 2/metabolismo , Calbindinas/metabolismo , Gatos , Chinchilla , Dendritas/metabolismo , Femenino , Humanos , Inmunohistoquímica , Macaca , Masculino , Persona de Mediana Edad , Óxido Nítrico Sintasa de Tipo I/metabolismo , Pan troglodytes , Parvalbúminas/metabolismo , Ratas , Especificidad de la Especie
8.
Neural Regen Res ; 12(4): 518-524, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28553320

RESUMEN

Axonal degeneration is a pivotal feature of many neurodegenerative conditions and substantially accounts for neurological morbidity. A widely used experimental model to study the mechanisms of axonal degeneration is Wallerian degeneration (WD), which occurs after acute axonal injury. In the peripheral nervous system (PNS), WD is characterized by swift dismantling and clearance of injured axons with their myelin sheaths. This is a prerequisite for successful axonal regeneration. In the central nervous system (CNS), WD is much slower, which significantly contributes to failed axonal regeneration. Although it is well-documented that Schwann cells (SCs) have a critical role in the regenerative potential of the PNS, to date we have only scarce knowledge as to how SCs 'sense' axonal injury and immediately respond to it. In this regard, it remains unknown as to whether SCs play the role of a passive bystander or an active director during the execution of the highly orchestrated disintegration program of axons. Older reports, together with more recent studies, suggest that SCs mount dynamic injury responses minutes after axonal injury, long before axonal breakdown occurs. The swift SC response to axonal injury could play either a pro-degenerative role, or alternatively a supportive role, to the integrity of distressed axons that have not yet committed to degenerate. Indeed, supporting the latter concept, recent findings in a chronic PNS neurodegeneration model indicate that deactivation of a key molecule promoting SC injury responses exacerbates axonal loss. If this holds true in a broader spectrum of conditions, it may provide the grounds for the development of new glia-centric therapeutic approaches to counteract axonal loss.

10.
Anat Rec (Hoboken) ; 297(10): 1865-84, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25132345

RESUMEN

The dorsal cochlear nucleus (DCN) is a brainstem structure that receives input from the auditory nerve. Many studies in a diversity of species have shown that the DCN has a laminar organization and identifiable neuron types with predictable synaptic relations to each other. In contrast, studies on the human DCN have found a less distinct laminar organization and fewer cell types, although there has been disagreement among studies in how to characterize laminar organization and which of the cell types identified in other animals are also present in humans. We have reexamined DCN organization in the human using immunohistochemistry to analyze the expression of several proteins that have been useful in delineating the neurochemical organization of other brainstem structures in humans: nonphosphorylated neurofilament protein (NPNFP), nitric oxide synthase (nNOS), and three calcium-binding proteins. The results for humans suggest a laminar organization with only two layers, and the presence of large projection neurons that are enriched in NPNFP. We did not observe evidence in humans of the inhibitory interneurons that have been described in the cat and rodent DCN. To compare humans and other animals directly we used immunohistochemistry to examine the DCN in the macaque monkey, the cat, and three rodents. We found similarities between macaque monkey and human in the expression of NPNFP and nNOS, and unexpected differences among species in the patterns of expression of the calcium-binding proteins.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Núcleo Coclear/metabolismo , Proteínas de Neurofilamentos/metabolismo , Óxido Nítrico Sintasa/metabolismo , Animales , Gatos , Chinchilla , Cobayas , Humanos , Macaca , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA