Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 110(34): 13938-43, 2013 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-23918391

RESUMEN

Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are oppositely imprinted autism-spectrum disorders with known genetic bases, but complex epigenetic mechanisms underlie their pathogenesis. The PWS/AS locus on 15q11-q13 is regulated by an imprinting control region that is maternally methylated and silenced. The PWS imprinting control region is the promoter for a one megabase paternal transcript encoding the ubiquitous protein-coding Snrpn gene and multiple neuron-specific noncoding RNAs, including the PWS-related Snord116 repetitive locus of small nucleolar RNAs and host genes, and the antisense transcript to AS-causing ubiquitin ligase encoding Ube3a (Ube3a-ATS). Neuron-specific transcriptional progression through Ube3a-ATS correlates with paternal Ube3a silencing and chromatin decondensation. Interestingly, topoisomerase inhibitors, including topotecan, were recently identified in an unbiased drug screen for compounds that could reverse the silent paternal allele of Ube3a in neurons, but the mechanism of topotecan action on the PWS/AS locus is unknown. Here, we demonstrate that topotecan treatment stabilizes the formation of RNA:DNA hybrids (R loops) at G-skewed repeat elements within paternal Snord116, corresponding to increased chromatin decondensation and inhibition of Ube3a-ATS expression. Neural precursor cells from paternal Snord116 deletion mice exhibit increased Ube3a-ATS levels in differentiated neurons and show a reduced effect of topotecan compared with wild-type neurons. These results demonstrate that the AS candidate drug topotecan acts predominantly through stabilizing R loops and chromatin decondensation at the paternally expressed PWS Snord116 locus. Our study holds promise for targeted therapies to the Snord116 locus for both AS and PWS.


Asunto(s)
Síndrome de Angelman/genética , Cromosomas Humanos Par 15/genética , Regulación de la Expresión Génica/genética , Síndrome de Prader-Willi/genética , ARN Nucleolar Pequeño/química , Topotecan/farmacología , Animales , Cromatina/efectos de los fármacos , Inmunoprecipitación de Cromatina , Silenciador del Gen , Sitios Genéticos/genética , Impresión Genómica/genética , Células HEK293 , Humanos , Immunoblotting , Hibridación Fluorescente in Situ , Región de Control de Posición/genética , Ratones , Ratones Noqueados , Neuronas/metabolismo , ARN sin Sentido/genética , ARN sin Sentido/metabolismo , ARN Nucleolar Pequeño/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Estadísticas no Paramétricas , Ubiquitina-Proteína Ligasas/genética , Proteínas Nucleares snRNP/genética
2.
Hum Mol Genet ; 22(21): 4318-28, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-23771028

RESUMEN

Prader-Willi syndrome (PWS), a genetic disorder of obesity, intellectual disability and sleep abnormalities, is caused by loss of non-coding RNAs on paternal chromosome 15q11-q13. The imprinted minimal PWS locus encompasses a long non-coding RNA (lncRNA) transcript processed into multiple SNORD116 small nucleolar RNAs and the spliced exons of the host gene, 116HG. However, both the molecular function and the disease relevance of the spliced lncRNA 116HG are unknown. Here, we show that 116HG forms a subnuclear RNA cloud that co-purifies with the transcriptional activator RBBP5 and active metabolic genes, remains tethered to the site of its transcription and increases in size in post-natal neurons and during sleep. Snord116del mice lacking 116HG exhibited increased energy expenditure corresponding to the dysregulation of diurnally expressed Mtor and circadian genes Clock, Cry1 and Per2. These combined genomic and metabolic analyses demonstrate that 116HG regulates the diurnal energy expenditure of the brain. These novel molecular insights into the energy imbalance in PWS should lead to improved therapies and understanding of lncRNA roles in complex neurodevelopmental and metabolic disorders.


Asunto(s)
Ritmo Circadiano/genética , Metabolismo Energético/genética , Síndrome de Prader-Willi/genética , Síndrome de Prader-Willi/fisiopatología , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Animales , Autopsia , Encéfalo/fisiopatología , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Criptocromos/genética , Criptocromos/metabolismo , Proteínas de Unión al ADN , Femenino , Regulación del Desarrollo de la Expresión Génica , Impresión Genómica , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Sueño/genética
3.
Curr Biol ; 30(13): 2602-2607.e2, 2020 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-32442457

RESUMEN

Population density can modulate the developmental trajectory of Caenorhabditis elegans larvae by promoting entry into dauer diapause, which is characterized by metabolic and anatomical remodeling and stress resistance [1, 2]. Genetic analysis of dauer formation has identified the involvement of evolutionarily conserved endocrine signaling pathways, including the DAF-2/insulin-like receptor signaling pathway [3-7]. Chemical and metabolomic analysis of dauer-inducing pheromone has identified a family of small molecules, ascarosides, which act potently to communicate increased population density and promote dauer formation [1, 8-10]. Here, we show that adult animals respond to ascarosides produced under conditions of increased population density by increasing the duration of reproduction. We observe that the ascarosides that promote dauer entry of larvae also act on adult animals to attenuate expression of the insulin peptide INS-6 from the ASI chemosensory neurons, resulting in diminished neuroendocrine insulin signaling that extends the duration of reproduction. Genetic analysis of ins-6 and corresponding insulin-signaling pathway mutants showed that the effect of increased population density on reproductive span was mimicked by ins-6 loss of function that exerted effects on duration of reproduction through the canonical DAF-2-DAF-16 pathway. We further observed that the effect of population density on reproductive span acted through DAF-16-dependent and DAF-16-independent pathways upstream of DAF-12, paralleling in adults what has been observed for the dauer developmental decision of larvae. Our data suggest that, under conditions of increased population density, C. elegans animals prolong the duration of reproductive egg laying, which may enable the subsequent development of progeny under more favorable conditions.


Asunto(s)
Caenorhabditis elegans/fisiología , Animales , Proteínas de Caenorhabditis elegans/metabolismo , Insulina/metabolismo , Densidad de Población , Reproducción , Atractivos Sexuales/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA