RESUMEN
Three new pyridinium-phenolate dyes based on the benchmark solvatochromic dye Betaine 30 were synthesised. The dyes contained phenylene spacers between the donor and acceptor groups. Their UV-Vis absorption spectra were measured, with the dyes showing strong negative solvatochromic behaviour comparable to that of Betaine 30. These results stood in contrast to the behaviour of the π-extended dye Betaine 21, originally reported in 1963. This dye was synthesised and found to be significantly more solvatochromic than previously reported but prone to degrade. All π-extended dyes synthesised were found to be unstable in certain solvents. Although the increased distance between donor and acceptor did not enhance solvatochromism to the extent predicted, it was still determined that the reduced planarity caused by a phenylene spacer is not as detrimental as believed.
RESUMEN
Boronic acid protecting group chemistry powerfully enhances the versatility of Suzuki-Miyaura cross-coupling. Prominent examples include trifluoroborate salts, N-methyliminodiacetic acid (MIDA) boronates, and 1,8-diaminonaphthalene boronamides. In this work, we present a bis(2-hydroxybenzyl)methylamine (BOMA) ligand that forms tridentate complexes with boronic acids much like the MIDA ligand but the deprotection is facilitated by organic acids. The BOMA boronates showed considerable stability in both aqueous base and acid, and a variety of chemoselective reactions were performed on these boronates, including selective Suzuki-Miyaura coupling, palladium-catalyzed borylation, ester hydrolysis, alkylation, lithiation-borylation, and oxidative hydroxydeboronation.
RESUMEN
The alternating physical properties, especially melting points, of α,ω-disubstituted n-alkanes and their parent n-alkanes had been known since Baeyer's report in 1877. There is, however, no general and comprehensive explanation for such a phenomenon. Herein, we report the synthesis and examination of a series of novel ω-phenyl n-alkyl tropylium tetrafluoroborates, which also display alternation in their physicochemical characters. Despite being organic salts, the compounds with odd numbers of carbons in the alkyl bridge exist as room temperature ionic liquids. In stark contrast to this, the analogues with even numbers of carbons in the linker are crystalline solids. These solid nonconjugated molecules exhibit curious photoluminescent properties, which can be attributed to their ability to form through-space charge-transfer complexes to cause crystallization-induced emission enhancement. Most notably, the compound with the highest photoluminescent quantum yield in this series showed an unusual arrangement of carbocationic dimer in the solid state. A combination of XRD analysis and ab initio calculations revealed interesting insights into these systems.
RESUMEN
Improving the efficiency of triplet fusion upconversion (TF-UC) in the solid-state is still challenging due to the aggregation and phase separation of chromophores. In this work, two 9,10-diphenylanthracene (DPA) derivatives based on the modification of the 9,10-phenyl rings with bulky isopropyl groups (bDPA-1 and bDPA-2) were used as emitters. By using platinum octaethylporphyrin (PtOEP) as the sensitizer, TF-UC performance was comprehensively investigated in 3 media: toluene solution, polyurethane thin film and nano/micro-crystals in a polyvinyl alcohol matrix. Only a small difference in upconversion efficiency between the bulky DPAs and the DPA reference was observed in toluene solution and polyurethane thin film. However, a large improvement of TF-UC quantum yield was achieved in bDPA-2/PtOEP crystals (ΦUC = (0.92 ± 0.05)%) with a low excitation intensity threshold (52 mW cm-2) compared to that of DPA/PtOEP crystals (ΦUC = (0.09 ± 0.03)%). This difference was largely attributed to improved dispersibility of the PtOEP sensitizer in the bDPA-2 emitter crystals. The bulky DPAs also show excellent stability under UV irradiation with exposure to oxygen compared to DPA. These results provide a strategy for developing efficient solid-state TF-UC systems based on nano/micro-particles of emitter-sensitizer mixtures.
RESUMEN
A series of phycobilin analogues have been investigated in terms of coupled excitonic systems. These compounds consist of a monomer, a tetrapyrrole structurally similar to bilirubin (bR), and two conjugated bR analogues. Spectroscopic and computational methods have been used to investigate the degree of interchromophore coupling. We find the synthesised bR analogue shows stronger excitonic coupling than bR, owing to a different molecular geometry. The excitonic coupling in the conjugated molecules can be controlled by modifying the bridge side-group. New computed energy levels for bR using the DFT/MRCI method are also presented, which improve on published values and re-assign the character of excited singlet states.
Asunto(s)
Antioxidantes/química , Bilirrubina/química , Teoría Funcional de la Densidad , Antioxidantes/síntesis química , Bilirrubina/análogos & derivados , Bilirrubina/síntesis química , Estructura Molecular , Electricidad EstáticaRESUMEN
Environmental polarity is an important factor that drives biomolecular interactions to regulate cell function. Herein, a general method of using the fluorogenic probe NTPAN-MI is reported to quantify the subcellular polarity change in response to protein unfolding. NTPAN-MI fluorescence is selectively activated upon labeling unfolded proteins with exposed thiols, thereby reporting on the extent of proteostasis. NTPAN-MI also reveals the collapse of the host proteome caused by influenza A virus infection. The emission profile of NTPAN-MI contains information of the local polarity of the unfolded proteome, which can be resolved through spectral phasor analysis. Under stress conditions that disrupt different checkpoints of protein quality control, distinct patterns of dielectric constant distribution in the cytoplasm can be observed. However, in the nucleus, the unfolded proteome was found to experience a more hydrophilic environment across all the stress conditions, indicating the central role of nucleus in the stress response process.
Asunto(s)
Proteoma , Respuesta de Proteína Desplegada/genética , Núcleo Celular , Citoplasma , Diseño de Fármacos , Colorantes Fluorescentes/síntesis química , Células HEK293 , HumanosRESUMEN
Luminescent solar concentrators (LSCs) are light harvesting devices that are ideally suited to light collection in the urban environment where direct sunlight is often not available. LSCs consist of highly luminescent compounds embedded or coated on a transparent substrate that absorb diffuse or direct solar radiation over a large area. The resulting luminescence is trapped in the waveguide by total internal reflection to the thin edges of the substrate where the concentrated light can be used to improve the performance of photovoltaic devices. The concept of LSCs has been around for several decades, and yet the efficiencies of current devices are still below expectations for commercial viability. There are two primary challenges when designing new chromophores for LSC applications. Reabsorption of dye emission by chromophores within the waveguide is a significant loss mechanism attenuating the light output of LSCs. Concentration quenching, particularly in organic dye systems, restricts the quantity of chromophores that can be incorporated in the waveguide thus limiting the light absorbed by the LSC. Frequently, a compromise between increased light harvesting of the incident light and decreasing emission quantum yield is required for most organic chromophore-based systems due to concentration quenching. The low Stokes shift of common organic dyes used in current LSCs also imposes another optimization problem. Increasing light absorption of LSCs based on organic dyes to achieve efficient light harvesting also enhances reabsorption. Ideally, a design strategy to simultaneously optimize light harvesting, concentration quenching, and reabsorption of LSC chromophores is clearly needed to address the significant losses in LSCs. Over the past few years, research in our group has targeted novel dye structures that address these primary challenges. There is a common perception that dye aggregates are to be avoided in LSCs. It became apparent in our studies that aggregates of chromophores exhibiting aggregation-induced emission (AIE) behavior are attractive candidates for LSC applications. Strategic application of AIE chromophores has led to the development of the first organic-based transparent solar concentrator that harvests UV light as well as the demonstration of reabsorption reduction by taking advantage of energy migration processes between chromophores. Further developments led us to the application of perylene diimides using an energy migration/energy transfer approach. To prevent concentration quenching, a molecularly insulated perylene diimide with bulky substituents attached to the imide positions was designed and synthesized. By combining the insulated perylene diimide with a commercial perylene dye as an energy donor-acceptor emitter pair, detrimental luminescence reabsorption was reduced while achieving a high chromophore concentration for efficient light absorption. This Account reviews and reinspects some of our recent work and the improvements in the field of LSCs.
RESUMEN
Several new polymers with rotatable zinc porphyrin pendants have been synthesized and their optical spectroscopic and photophysical properties, including upconversion efficiencies, determined in both fluid solution and thin films. Comparisons made with the ß-substituted zinc tetraphenylporphyrin monomers and ZnTPP itself reveal that the yield of triplets resulting from either Q-band or Soret-band excitation of the polymers is surprisingly small. A detailed kinetic analysis of the fluorescence decays and transient triplet absorptions of the substituted monomers and their corresponding polymers reveals that this phenomenon is due to two parallel internal singlet quenching processes assigned to transient intrachain excimer formation. Consequently, the yields of upconverted S2 fluorescence resulting from Q-band excitation in the degassed polymers are significantly diminished in both fluid solution and thin films. Implications of these results for the design of polymer upconverting systems are discussed.
RESUMEN
Spectroscopic, photophysical and computational studies designed to expose and explain the differences in the efficiencies of non-coherent photon upconversion (NCPU) by triplet-triplet annihilation (TTA) have been carried out for a new series of alkyl-substituted diphenyl and tetraphenyl zinc porphyrins, both in fluid solution and in solid films. Systematic variations in the alkyl-substitution of the phenyl groups in both the di- and tetraphenyl porphyrins introduces small, but well-understood changes in their spectroscopic and photophysical properties and in their TTA efficiencies. In degassed toluene solution TTA occurs for all derivatives and produces the fluorescent S2 product states in all cases. In PVA matrices, however, none of the di-phenylporphyrins exhibit measurable NCPU whereas all the tetraphenyl-substituted compounds remain upconversion-active. In PVA the NCPU efficiencies of the zinc tetraphenylporphyrins vary significantly with their steric characteristics; the most sterically crowded tetraphenyl derivative exhibits the greatest efficiency. DFT-D computations have been undertaken and help reveal the sources of these differences.
RESUMEN
We report the findings of our experimental and theoretical investigations into the properties of pyridinium enolates and their potential utility in light-harvesting applications, such as in luminescent solar concentrators (LSCs). We present the synthesis, structures, photophysical characterization, and wavefunction-based quantum-chemical studies of five cyclobetaines. The performance of an LSC device incorporating one of these cyclobetaines is shown to be comparable to state-of-the-art devices.
RESUMEN
Synthesis of fluorene-based conjugated polyelectrolytes was achieved via Suzuki polycondensation in water and completely open to air. The polyelectrolytes were conveniently purified by dialysis and analysis of the materials showed properties expected for fluorene-based conjugated polyelectrolytes. The materials were then employed in solar cell devices as an interlayer in conjunction with ZnO. The double interlayer led to enhanced power conversion efficiency of 10.75 % and 15.1 % for polymer and perovskite solar cells, respectively.
RESUMEN
The synthesis of key 4-alkyl-substituted 5-(trimethylsilyl)thiophene-2-boronic acid pinacol esters 3 allowed a simplified alkylthiophene catenation process to access bis-, ter-, quater-, and quinquethiophene π-bridges for the synthesis of acceptor-π-bridge-donor- π-bridge-acceptor (A-π-D-π-A) electron donor molecules. Based on the known benzodithiophene-terthiophene-rhodanine (BTR) material, the BXR series of materials, BMR (X = M, monothiophene), BBR (X = B, bithiophene), known BTR (X = T, terthiophene), BQR (X = Q, quaterthiophene), and BPR (X = P(penta), quinquethiophene) were synthesised to examine the influence of chromophore extension on the device performance and stability for OPV applications. The BTxR (x = 4, butyl, and x = 8, octyl) series of materials were synthesised by varying the oligothiophene π-bridge alkyl substituent to examine structure-property relationships in OPV device performance. The devices assembled using electron donors with an extended chromophore (BQR and BPR) are shown to be more thermally stable than the BTR containing devices, with un-optimized efficiencies up to 9.0% PCE. BQR has been incorporated as a secondary donor in ternary blend devices with PTB7-Th resulting in high-performance OPV devices with up to 10.7% PCE.
RESUMEN
This account describes the work of our group in the area of organic photovoltaics in the past six years. The emphasis is on our experiences in the development of the organic materials, their characterization, scale-up and application in devices. We share our insight into the relationship between synthetic methods, molecular properties, bulk material properties and device performance.
RESUMEN
The regioselective synthesis of fullerene multiadducts was achieved from commercially available reagents in one pot over two steps. The configuration of the isolated regioisomers was determined using various NMR methods, UV-vis spectroscopy and electrochemical analysis with the structure of one isomer confirmed by single crystal X-ray analysis. Interesting variation in regioselectivity was observed when different amino acid reagents were used in the reactions. Theoretical calculations and additional experiments, such as deuterium exchange, led to a proposed mechanism for the regioselective product formation.
Asunto(s)
Fulerenos/química , Cristalografía por Rayos X , Reacción de Cicloadición , Espectroscopía de Resonancia Magnética , EstereoisomerismoRESUMEN
The compromise between light absorption and reabsorption losses limits the potential light conversion efficiency of luminescent solar concentrators (LSCs). Current approaches do not fully address both issues. By using the excitation energy transfer (EET) strategy with a donor chromophore that exhibits aggregation-induced emission (AIE) behaviour, it is shown that both transmission and reabsorption losses can be minimized in a LSC device achieving high light collection and concentration efficiencies. The light harvesting performance of the LSC developed has been characterized using fluorescence quantum yield measurements and Monte Carlo ray tracing simulations. Comparative incident photon conversion efficiency and short-circuit current data based on the LSC coupled to a silicon solar cell provide additional evidence for improved performance.
Asunto(s)
Suministros de Energía Eléctrica , Transferencia de Energía , Luminiscencia , Energía Solar , Método de Montecarlo , Nitrilos/química , Fotones , Piranos/químicaRESUMEN
Multi-resonance thermally activated delayed fluorescence (MR-TADF) materials are of interest for light-emitting applications due to their narrow emission bandwidths and high photoluminescence quantum yields. Whilst there have been numerous examples of multi-resonance molecules exhibiting efficient TADF, the photophysics and mechanism of TADF in multi-resonance emitters have not been investigated to the same extent as the more conventional spatially separated donor-acceptor TADF materials, limiting the development of MR-TADF devices. Here we study the photophysics of a multi-resonance TADF material, OQAO(mes)2, using transient absorption spectroscopy to spectrally resolve the triplet population(s). We identify multiple triplet populations with distinct spectral contributions, and resolve the dynamics between them. Unlike conventional donor-acceptor TADF materials that have previously been studied, we find these triplet states are not formed in equilibrium, instead exhibiting a slow evolution from a high-energy triplet to a low-energy triplet. Delayed fluorescence predominantly reflects the lifetime of the high-energy triplet state, indicating that the formation of the low-energy triplet is a loss pathway for TADF. We also find that greater amounts of the low-energy triplet are formed in a higher dielectric environment, which leads to less delayed fluorescence. These triplet dynamics have significant implications for TADF in devices, as depending on the identity of the triplet formed by electrical excitation, there will either be a significant barrier to TADF, or a competing nonradiative decay pathway.
RESUMEN
The photophysical behaviour of a triphenylamine-based organic dye sensitizer (Carbz-PAHTDTT) attached to alumina and titania nanoparticles (labelled Carbz-Al and Carbz-Ti, respectively) is examined in the absence and presence of the chenodeoxycholic acid (CDCA) coadsorber. The experiments are conducted in vacuo by suspending the target dye-sensitized nanoparticles within a quadrupole ion trap, where they are probed with laser radiation to obtain emission spectra and time-resolved excited state decay curves. For Carbz-Al, the dye's emission band is blue-shifted and the excited state lifetime is increased upon the coabsorption of CDCA, effects attributed to reduced dye aggregation. Compared to Carbz-Al, the Carbz-Ti excited state lifetimes are significantly shorter due to excited dye molecules injecting electrons into the titania conduction band. For Carbz-Ti, the electron injection quantum yields for the surfaces with CDCA (CDCA : dye = 25 : 1) and without CDCA are estimated to be 0.87 and 0.71, respectively. The gas-phase results demonstrate that Carbz-PAHTDTT dye aggregates are detrimental to the performance of a dye-sensitized solar cell.
Asunto(s)
Óxido de Aluminio/química , Compuestos de Anilina/química , Colorantes/química , Nanopartículas del Metal/química , Titanio/química , Ácido Quenodesoxicólico/química , Gases/química , Iones/química , Rayos Láser , Energía SolarRESUMEN
Organic light-emitting transistors (OLETs), a kind of highly integrated and minimized optoelectronic device, demonstrate great potential applications in various fields. The construction of high-performance OLETs requires the integration of high charge carrier mobility, strong emission, and high triplet exciton utilization efficiency in the active layer. However, it remains a significant long-term challenge, especially for single component active layer OLETs. Herein, the successful harvesting of triplet excitons in a high mobility emissive molecule, 2,6-diphenylanthracene (DPA), through the triplet-triplet annihilation process is demonstrated. By incorporating a highly emissive guest into the DPA host system, an obvious increase in photoluminescence efficiency along with exciton utilization efficiency results in an obvious enhancement of external quantum efficiency of 7.2 times for OLETs compared to the non-doped devices. Moreover, well-tunable multi-color electroluminescence, especially white emission with Commission Internationale del'Eclairage of (0.31, 0.35), from OLETs is also achieved by modulating the doping concentration with a controlled energy transfer process. This work opens a new avenue for integrating strong emission and efficient exciton utilization in high-mobility organic semiconductors for high-performance OLETs and advancing their related functional device applications.
RESUMEN
Apart from molecular properties, intermolecular forces play a vital role in defining the performance of organic electronic devices. This is particularly relevant in bulk heterojunction (BHJ) solar cells in which the arrangement of electron-donor and -acceptor materials into distinct crystalline phases of ideal size and distribution can lead to better power conversion efficiencies. In this study, a series of fluorenyl hexa-peri-hexabenzocoronenes (FHBC) decorated with thiophene dendrons (DOT) of variable size was obtained by using a convergent synthetic approach. With such variety of molecular sizes and shapes in hand, the objective of this study is to highlight the relationships between molecular properties, bulk properties and device performance. Correlations between π-π stacking ability and dendrimer generation were established from self-organisation studies in solution and solid state. The synergistic combination of molecular organisation at the nanoscale and photophysical characteristics derived from the FHBC and DOT moieties leads to a notable improvement of the photovoltaic performance.
Asunto(s)
Dendrímeros/química , Compuestos Policíclicos/química , Compuestos Policíclicos/síntesis química , Tiofenos/química , Tiofenos/síntesis química , Suministros de Energía Eléctrica , Estructura Molecular , Procesos Fotoquímicos , Energía Solar , Espectrometría de Masa por Láser de Matriz Asistida de Ionización DesorciónRESUMEN
Various fullerene-based electron acceptor materials for organic photovoltaic applications were prepared via [3+2] and [4+2] cycloadditions using a continuous flow approach. The 1,3-dipolar cycloaddition of the tosylhydrazone precursor and the Diels-Alder cycloaddition of indene to either C(60) or C(70) under conventional batch reaction conditions were translated to the continuous flow process. By varying the residence time, temperature, and equivalents of cycloaddition reagent, significant improvements in yields and reaction times were achieved over conventional batch processes.