RESUMEN
In this letter, we evaluate antenna designs for ultra-high frequency and field (UHF) human brain magnetic resonance imaging (MRI) at 10.5 tesla (T). Although MRI at such UHF is expected to provide major signal-to-noise gains, the frequency of interest, 447 MHz, presents us with challenges regarding improved B1 + efficiency, image homogeneity, specific absorption rate (SAR), and antenna element decoupling for array configurations. To address these challenges, we propose the use of both monopole and dipole antennas in a novel hybrid configuration, which we refer to as a mono-dipole hybrid antenna (MDH) array. Compared to an 8-channel dipole antenna array of the same dimensions, the 8-channel MDH array showed an improvement in decoupling between adjacent array channels, as well as ~18% higher B1 + and SAR efficiency near the central region of the phantom based on simulation and experiment. However, the performances of the MDH and dipole antenna arrays were overall similar when evaluating a human model in terms of peak B1 + efficiency, 10 g SAR, and SAR efficiency. Finally, the concept of an MDH array showed an advantage in improved decoupling, SAR, and B1 + near the superior region of the brain for human brain imaging.
RESUMEN
PURPOSE: Investigating the designs and effects of high dielectric constant (HDC) materials in the shape of a conformal helmet on the enhancement of RF field and reduction of specific absorption rate at 10.5 T for human brain studies. METHODS: A continuous and a segmented four-piece HDC helmet fit to a human head inside an eight-channel fractionated-dipole array were constructed and studied with a phantom and a human head model using computer electromagnetic simulations. The simulated transmit efficiency and receive sensitivity were experimentally validated using a phantom with identical electric properties and helmet-coil configurations of the computer model. The temporal and spatial distributions of displacement currents on the HDC helmets were analyzed. RESULTS: Using the continuous HDC helmet, simulation results in the human head model demonstrated an average transmit efficiency enhancement of 66%. A propagating displacement current was induced on the continuous helmet, leading to an inhomogeneous RF field enhancement in the brain. Using the segmented four-piece helmet design to reduce this effect, an average 55% and 57% enhancement in the transmit efficiency and SNR was achieved in human head, respectively, along with 8% and 28% reductions in average and maximum local specific absorption rate. CONCLUSION: The HDC helmets enhanced the transmit efficiency and SNR of the dipole array coil in the human head at 10.5 T. The segmentation of the helmet to disrupt the continuity of circumscribing displacement currents in the helmet produced a more uniform distribution of the transmit field and lower specific absorption rate in the human head compared with the continuous helmet design.
Asunto(s)
Dispositivos de Protección de la Cabeza , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Diseño de Equipo , Humanos , Fantasmas de Imagen , Ondas de RadioRESUMEN
For ultra-high field and frequency (UHF) magnetic resonance imaging (MRI), the associated short wavelengths in biological tissues leads to penetration and homogeneity issues at 10.5 tesla (T) and require antenna transmit arrays for efficiently generated 447 MHz B1+ fields (defined as the transmit radiofrequency (RF) magnetic field generated by RF coils). Previously, we evaluated a 16-channel combined loop + dipole antenna (LD) 10.5 T head array. While the LD array configuration did not achieve the desired B1+ efficiency, it showed an improvement of the specific absorption rate (SAR) efficiency compared to the separate 8-channel loop and separate 8-channel dipole antenna arrays at 10.5 T. Here we compare a 16-channel dipole antenna array with a 16-channel LD array of the same dimensions to evaluate B1+ efficiency, 10 g SAR, and SAR efficiency. The 16-channel dipole antenna array achieved a 24% increase in B1+ efficiency in the electromagnetic simulation and MR experiment compared to the LD array, as measured in the central region of a phantom. Based on the simulation results with a human model, we estimate that a 16-channel dipole antenna array for human brain imaging can increase B1+ efficiency by 15% with similar SAR efficiency compared to a 16-channel LD head array.
Asunto(s)
Imagen por Resonancia Magnética , Ondas de Radio , Encéfalo/diagnóstico por imagen , Diseño de Equipo , Humanos , Fantasmas de ImagenRESUMEN
For human head magnetic resonance imaging at 10.5 tesla (T), we built an 8-channel transceiver dipole antenna array and evaluated the influence of coaxial feed cables. The influence of coaxial feed cables was evaluated in simulation and compared against a physically constructed array in terms of transmit magnetic field (B1+) and specific absorption rate (SAR) efficiency. A substantial drop (23.1% in simulation and 20.7% in experiment) in B1+ efficiency was observed with a tight coaxial feed cable setup. For the investigation of the feed location, the center-fed dipole antenna array was compared to two 8-channel end-fed arrays: monopole and sleeve antenna arrays. The simulation results with a phantom indicate that these arrays achieved ~24% higher SAR efficiency compared to the dipole antenna array. For a human head model, we observed 30.8% lower SAR efficiency with the 8-channel monopole antenna array compared to the phantom. Importantly, our simulation with the human model indicates that the sleeve antenna arrays can achieve 23.8% and 21% higher SAR efficiency compared to the dipole and monopole antenna arrays, respectively. Finally, we obtained high-resolution human cadaver images at 10.5 T with the 8-channel sleeve antenna array.
Asunto(s)
Cabeza , Imagen por Resonancia Magnética , Simulación por Computador , Diseño de Equipo , Cabeza/diagnóstico por imagen , Humanos , Fantasmas de ImagenRESUMEN
In vivo 31 P magnetic resonance spectroscopy (MRS) provides a unique tool for the non-invasive study of brain energy metabolism and mitochondrial function. The assessment of bioenergetic impairment in different brain regions is essential to understand the pathophysiology and progression of human brain diseases. This article presents a simple and effective approach which allows the interleaved measurement of 31 P spectra and imaging from two distinct human brain regions of interest with dynamic B0 shimming capability. A transistor-transistor logic controller was employed to actively switch the single-channel X-nuclear radiofrequency (RF) transmitter-receiver between two 31 P RF surface coils, enabling the interleaved acquisition of two 31 P free induction decays (FIDs) from human occipital and frontal lobes within the same repetition time. Linear gradients were incorporated into the RF pulse sequence to perform the first-order dynamic shimming to further improve spectral resolution. The overall results demonstrate that the approach provides a cost-effective and time-efficient solution for reliable 31 P MRS measurement of cerebral phosphate metabolites and adenosine triphosphate (ATP) metabolic fluxes from two human brain regions with high detection sensitivity and spectral quality at 7 T. The same design concept can be extended to acquire multiple spectra from more than two brain regions or can be employed for other magnetic resonance applications beyond the 31 P spin.
Asunto(s)
Lóbulo Frontal/fisiología , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Lóbulo Occipital/fisiología , Fósforo/química , Simulación por Computador , Humanos , Imagenología Tridimensional , Masculino , Adulto JovenRESUMEN
PURPOSE: To propose a new Extended Monopole antenna Array with individual Shields (EMAS) coil that improves the B1 field coverage and uniformity along the z-direction. METHODS: To increase the spatial coverage of Monopole antenna Array (MA) coil, each monopole antenna was shielded and extended in length. Performance of this new coil, which is referred to as EMAS coil, was compared with the original MA coil and an Extended Monopole antenna Array coil with no shield (EMA). For comparison, flip angle, signal-to-noise ratio (SNR), and receive sensitivity maps were measured at multiple regions of interest (ROIs) in the brain. RESULTS: The EMAS coil demonstrated substantially larger flip angle and receive sensitivity than the MA and EMA coils in the inferior aspect of the brain. In the brainstem ROI, for example, the flip angle in the EMAS coil was increased by 45.5% (or 60.0%) and the receive sensitivity was increased by 26.9% (or 14.9%), resulting in an SNR gain of 84.8% (or 76.3%) when compared with the MA coil (or EMA). CONCLUSION: The EMAS coil provided 25.7% (or 24.4%) more uniform B1+ field distribution compared with the MA (or EMA) coil in sagittal. The EMAS coil successfully extended the imaging volume in lower part of the brain. Magn Reson Med 75:2566-2572, 2016. © 2015 Wiley Periodicals, Inc.
Asunto(s)
Encéfalo/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/instrumentación , Imagen por Resonancia Magnética/métodos , Diseño de Equipo , Humanos , Relación Señal-RuidoRESUMEN
PURPOSE: We have developed and evaluated a monopole antenna array that can increase sensitivity at the center of the brain for 7T MRI applications. METHODS: We have developed a monopole antenna array that has half the length of a conventional dipole antenna with eight channels for brain imaging with a 7T MRI. The eight-channel monopole antenna array and conventional eight-channel transceiver surface coil array were evaluated and compared in terms of transmit properties, specific absorption ratio (SAR), and sensitivity. The sensitivity maps were generated by dividing the SNR map by the flip angle distribution. RESULTS: A single surface coil provides asymmetric sensitivity resulting in reduced sensitivity at the center of the brain. In contrast, a single monopole antenna provides higher sensitivity at the center of the brain. Moreover, the monopole antenna array provides uniform sensitivity over the entire brain, and the sensitivity gain was 1.5 times higher at the center of the brain compared with the surface coil array. CONCLUSION: The monopole antenna array is a promising candidate for MRI applications, especially for brain imaging in a 7T MRI because it provides increased sensitivity at the center of the brain.
Asunto(s)
Encéfalo/anatomía & histología , Análisis de Falla de Equipo/instrumentación , Aumento de la Imagen/instrumentación , Magnetismo/instrumentación , Transductores , Diseño Asistido por Computadora , Diseño de Equipo , Humanos , Reproducibilidad de los Resultados , Sensibilidad y EspecificidadRESUMEN
Changes in specific circulating RNA (circRNA) expressions can serve as diagnostic noninvasive biomarkers for prostate cancer (PCa). However, there are still unmet needs, such as unclear types and roles of circRNAs, PCa detection in benign prostatic hyperplasia (BPH) by unstandardized methods, and limitations of sample volume capacity and low circRNA concentrations. This study reports a simple and rapid circRNA enrichment and isolation technique named "HAZIS-CirR" for the analysis of urinary circRNAs. The method utilizes homobifunctional hydrazides with amine-modified zeolite and polyvinylidene fluoride (PVDF) syringe filtration for combining electrostatic and covalent coupling and size-based filtration, and it offers instrument-free isolation of circRNAs in 20 min without volume limitation, thermoregulation, and lysis. HAZIS-CirR has high capture efficiency (82.03%-92.38%) and a 10-fold more sensitive detection limit (20 fM) than before enrichment (200 fM). The clinical utility of HAZIS-CirR is confirmed by analyzing circulating mRNAs and circulating miRNAs in 89 urine samples. Furthermore, three miRNA panels that differentiate PCa from BPH and control, PCa from control, and BPH from control, respectively, are established by comparing miRNA levels. HAZIS-CirR will be used as an optimal and established method for the enrichment and isolation of circRNAs as diagnostic, prognostic, and predictive biomarkers in human cancers.
RESUMEN
For human brain magnetic resonance imaging (MRI), high channel count ( ≥ 32 ) radiofrequency receiver coil arrays are utilized to achieve maximum signal-to-noise ratio (SNR) and to accelerate parallel imaging techniques. With ultra-high field (UHF) MRI at 7 tesla (T) and higher, dipole antenna arrays have been shown to generate high SNR in the deep regions of the brain, however the array elements exhibit increased electromagnetic coupling with one another, making array construction more difficult with the increasing number of elements. Compared to a classical dipole antenna array, a sleeve antenna array incorporates the coaxial ground into the feed-point, resulting in a modified asymmetric antenna structure with improved intra-element decoupling. Here, we extended our previous 16-channel sleeve transceiver work and developed a 32-channel azimuthally arranged sleeve antenna receive-only array for 10.5 T human brain imaging. We experimentally compared the achievable SNR of the sleeve antenna array at 10.5 T to a more traditional 32-channel loop array bult onto a human head-shaped former. The results obtained with a head shaped phantom clearly demonstrated that peripheral intrinsic SNR can be significantly improved compared to a loop array with the same number of elements- except for the superior part of the phantom where sleeve antenna elements are not located.
Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Cabeza/diagnóstico por imagen , Ondas de Radio , Fantasmas de Imagen , Relación Señal-Ruido , Diseño de EquipoRESUMEN
Multi-element transmit arrays with low peak 10 g specific absorption rate (SAR) and high SAR efficiency (defined as ( [Formula: see text]SAR [Formula: see text] are essential for ultra-high field (UHF) magnetic resonance imaging (MRI) applications. Recently, the adaptation of dipole antennas used as MRI coil elements in multi-channel arrays has provided the community with a technological solution capable of producing uniform images and low SAR efficiency at these high field strengths. However, human head-sized arrays consisting of dipole elements have a practical limitation to the number of channels that can be used due to radiofrequency (RF) coupling between the antenna elements, as well as, the coaxial cables necessary to connect them. Here we suggest an asymmetric sleeve antenna as an alternative to the dipole antenna. When used in an array as MRI coil elements, the asymmetric sleeve antenna can generate reduced peak 10 g SAR and improved SAR efficiency. To demonstrate the advantages of an array consisting of our suggested design, we compared various performance metrics produced by 16-channel arrays of asymmetric sleeve antennas and dipole antennas with the same dimensions. Comparison data were produced on a phantom in electromagnetic (EM) simulations and verified with experiments at 10.5 Tesla (T). The results produced by the 16-channel asymmetric sleeve antenna array demonstrated 28 % lower peak 10 g SAR and 18.6 % higher SAR efficiency when compared to the 16-channel dipole antenna array.
Asunto(s)
Imagen por Resonancia Magnética , Ondas de Radio , Benchmarking , Diseño de Equipo , Humanos , Fantasmas de ImagenRESUMEN
We evaluated a 16-channel loop + dipole (LD) transceiver antenna array with improved specific absorption rate (SAR) efficiency for 10.5 Tesla (T) human head imaging apsplications. Three different array designs with equal inner dimensions were considered: an 8-channel dipole antenna, an 8-channel loop, and a 16-channel LD antenna arrays. Signal-to-noise ratio (SNR) and B1 + efficiency (in units of µT per âW) were simulated and measured in 10.5 T magnetic resonance imaging (MRI) experiments. For the safety validation, 10 g SAR and SAR efficiency (defined as the B1 + over â (peak 10 g SAR)) were calculated through simulation. Finally, high resolution porcine brain images were acquired with the 16-channel LD antenna array, including a fast turbo-spin echo (TSE) sequence incorporating B1 shimming techniques. Both the simulation and experiments demonstrated that the combined 16-channel LD antenna array showed similar B1 + efficiency compared to the 8-channel dipole antenna and the 8-channel loop arrays in a circular polarized (CP) mode. In a central 2 mm × 2 mm region of the phantom, however, the 16-channel LD antenna array showed an improvement in peak 10 g SAR of 27.5 % and 32.5 % over the 8-channel dipole antenna and the 8-channel loop arrays, respectively. We conclude that the proposed 16-channel head LD antenna array design is capable of achieving ~7% higher SAR efficiency at 10.5 T compared to either the 8-channel loop-only or the 8-channel dipole-only antenna arrays of the same dimensions.
RESUMEN
The purpose of the present study was to investigate the patterns of interregional correlations of serotonin transporter (SERT) availability with glucose metabolism using 7-Tesla magnetic resonance imaging (MRI) and high-resolution positron emission tomography (PET) with 11C-3-amino-4-(2-dimethylaminomethylphenylthio)benzonitrile ([11C]DASB) and [18F]fluorodeoxyglucose ([18F]FDG) in antipsychotic-free patients with schizophrenia in order to shed new light on the disrupted functional connectivity in schizophrenia. Nineteen patients with schizophrenia and 18 healthy controls underwent high-resolution PET and MRI. The binding potential (BPND) of [11C]DASB and standardized uptake value ratio (SUVR) of [18F]FDG were obtained. In SERT availability, the region of interest (ROI)-based analyses showed no significant group differences in any region, except for the anterior hippocampus where the SERT availability was lower in patients with schizophrenia than in controls. The ROI- and voxel-based analyses revealed that the [18F]FDG SUVR values were significantly lower in patients than in controls in the right superior frontal gyrus and medial part of the left superior frontal gyrus. Regarding the interregional correlations of [11C]DASB BPND with [18F]FDG SUVR, more widespread positive correlations across the brain regions were observed in control subjects than in patients with schizophrenia. Notably, the patients and control subjects showed statistically significant differences in correlations between the SERT availability in the parietal and temporal cortices and the glucose metabolism in the posterior cingulate cortex. These results suggest abnormal functional connectivity between the higher-order cortical regions in schizophrenia and a possible important role of the posterior cingulate gyrus and its related circuitry in the pathophysiology of schizophrenia.
Asunto(s)
Corteza Cerebral/metabolismo , Glucosa/metabolismo , Tomografía de Emisión de Positrones , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Adulto , Bencilaminas/farmacocinética , Corteza Cerebral/diagnóstico por imagen , Femenino , Fluorodesoxiglucosa F18/farmacocinética , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Escalas de Valoración Psiquiátrica , Radiofármacos/farmacocinéticaRESUMEN
7 T arterial spin labeling (ASL) faces major challenges including the increased specific absorption rate (SAR) and increased B0 and B1 inhomogeneity. This work describes the design and implementation of a dual-coil system that allows for continuous ASL (CASL) at 7 T. This system consisted of an actively detunable eight-channel transceiver head coil, and a three-channel transceiver labeling coil. Four experiments were performed in 5 healthy subjects: (i) to demonstrate that active detuning during ASL labeling reduces magnetization transfer; (ii) to measure the B1 profile at the labeling plane; (iii) to quantify B0 off-resonance at the labeling plane; and (iv) to collect in vivo CASL data. The magnetization transfer ratio in the head coil was reduced to 0.0 ± 0.2% by active detuning during labeling. The measured B1 profiles in all 5 subjects were sufficient to satisfy the flow-driven adiabatic inversion necessary for CASL, however the actual labeling efficiency was significantly impacted by B0 off-resonance at the labeling plane. The measured CASL percent signal change in gray matter (0.94% ± 0.10%) corresponds with the low labeling efficiency predicted by the B0 off-resonance. This work demonstrates progress in the technical implementation of 7 T CASL, and reinforces the need for improved B0 homogeneity at the labeling plane.
RESUMEN
PURPOSE: To investigate intracranial microvascular images with transceiver radio-frequency (RF) coils at ultra-high field 7 T magnetic resonance imaging (MRI). MATERIALS AND METHODS: We designed several types of RF coils for the study of 7 T magnetic resonance angiography and analyzed quantitatively each coil's performance in terms of the signal-to-noise ratio (SNR) profiles to evaluate the usefulness of RF coils for microvascular imaging applications. We also obtained the microvascular images with different resolutions and parallel imaging technique. RESULTS: The overlapped 6-channel (ch) transceiver coil exhibited the highest performance for angiographic imaging. Although other multi-channel coils, such as 4- or 8-ch, were also suitable for fast imaging, these coils performed poorly in homogeneity or SNR for angiographic imaging. Furthermore, the 8-ch coil was poor in SNR at the center of the brain, while it had the highest SNR at the periphery. CONCLUSION: The present study has demonstrated that the overlapped 6-ch coil with large-size loop coils provided the best performance for microvascular imaging or angiography with the ultra-high-field 7 T MRI, mainly because of its long penetration depth together with high SNR.