Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
EMBO Rep ; 23(2): e54384, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-34914165

RESUMEN

During embryonic development, hematopoiesis occurs through primitive and definitive waves, giving rise to distinct blood lineages. Hematopoietic stem cells (HSCs) emerge from hemogenic endothelial (HE) cells, through endothelial-to-hematopoietic transition (EHT). In the adult, HSC quiescence, maintenance, and differentiation are closely linked to changes in metabolism. However, metabolic processes underlying the emergence of HSCs from HE cells remain unclear. Here, we show that the emergence of blood is regulated by multiple metabolic pathways that induce or modulate the differentiation toward specific hematopoietic lineages during human EHT. In both in vitro and in vivo settings, steering pyruvate use toward glycolysis or OXPHOS differentially skews the hematopoietic output of HE cells toward either an erythroid fate with primitive phenotype, or a definitive lymphoid fate, respectively. We demonstrate that glycolysis-mediated differentiation of HE toward primitive erythroid hematopoiesis is dependent on the epigenetic regulator LSD1. In contrast, OXPHOS-mediated differentiation of HE toward definitive hematopoiesis is dependent on cholesterol metabolism. Our findings reveal that during EHT, metabolism is a major regulator of primitive versus definitive hematopoietic differentiation.


Asunto(s)
Hemangioblastos , Diferenciación Celular , Linaje de la Célula/genética , Femenino , Hemangioblastos/metabolismo , Hematopoyesis/genética , Células Madre Hematopoyéticas/metabolismo , Humanos , Embarazo , Piruvatos/metabolismo
2.
Haematologica ; 105(5): 1206-1215, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31371413

RESUMEN

Human bone marrow stromal cells (BMSC) are key elements of the hematopoietic environment and they play a central role in bone and bone marrow physiology. However, how key stromal cell functions are regulated is largely unknown. We analyzed the role of the immediate early response transcription factor EGR1 as key stromal cell regulator and found that EGR1 was highly expressed in prospectively-isolated primary BMSC, down-regulated upon culture, and low in non-colony-forming CD45neg stromal cells. Furthermore, EGR1 expression was lower in proliferative regenerating adult and fetal primary cells compared to adult steady-state BMSC. Overexpression of EGR1 in stromal cells induced potent hematopoietic stroma support as indicated by an increased production of transplantable CD34+CD90+ hematopoietic stem cells in expansion co-cultures. The improvement in bone marrow stroma support function was mediated by increased expression of hematopoietic supporting genes, such as VCAM1 and CCL28 Furthermore, EGR1 overexpression markedly decreased stromal cell proliferation whereas EGR1 knockdown caused the opposite effects. These findings thus show that EGR1 is a key stromal transcription factor with a dual role in regulating proliferation and hematopoietic stroma support function that is controlling a genetic program to co-ordinate the specific functions of BMSC in their different biological contexts.


Asunto(s)
Células Madre Mesenquimatosas , Adulto , Antígenos CD34 , Células de la Médula Ósea , Proliferación Celular , Células Madre Hematopoyéticas , Humanos , Células del Estroma
3.
Stem Cells ; 35(1): 197-206, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27641910

RESUMEN

Cell stressors, such as elevated levels of reactive oxygen species (ROS), adversely affect hematopoietic stem cell (HSC) reconstituting ability. However, the effects of ROS have not been evaluated in the context of hematopoietic development from human pluripotent stem cells (hPSCs). Using our previously described in vitro system for efficient derivation of hematopoietic cells from hPSCs, we show that the vast majority of generated hematopoietic cells display supraphysiological levels of ROS compared to fresh cord blood cells. Elevated ROS resulted in DNA damage of the CD34+ hematopoietic fraction and, following functional assays, reduced colony formation and impaired proliferative capacity. Interestingly, all the proliferative potential of the most primitive hematopoietic cells was limited to a small fraction with low ROS levels. We show that elevation of ROS in hPSC-derived hematopoietic cells is contributed by multiple distinct cellular processes. Furthermore, by targeting these molecular processes with 4 unique factors, we could reduce ROS levels significantly, yielding a 22-fold increase in the most primitive CD90+ CD34+ hematopoietic cells with robust growth capacity. We demonstrate that the ROS reducing factors specifically reduced ROS in more primitive hematopoietic fractions, in contrast to endothelial cells that maintained low ROS levels in the cultures. We conclude that high levels of ROS in in vitro differentiation systems of hPSCs is a major determinant in the lack of ability to generate hematopoietic cells with similar proliferation/differentiation potential to in vivo hematopoietic progenitors, and suggest that elevated ROS is a significant barrier to generating hPSC-derived repopulating HSCs. Stem Cells 2017;35:197-206.


Asunto(s)
Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Células Madre Pluripotentes/citología , Especies Reactivas de Oxígeno/farmacología , Antígenos Thy-1/metabolismo , Animales , Proliferación Celular , Células Endoteliales/citología , Células Endoteliales/metabolismo , Células Madre Hematopoyéticas/efectos de los fármacos , Humanos , Ratones , Fracciones Subcelulares/metabolismo
4.
Stem Cells ; 32(5): 1173-82, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24446123

RESUMEN

It has become increasingly clear that several age-associated pathologies associate with mutations in the mitochondrial genome. Experimental modeling of such events has revealed that acquisition of mitochondrial DNA (mtDNA) damage can impair respiratory function and, as a consequence, can lead to widespread decline in cellular function. This includes premature aging syndromes. By taking advantage of a mutator mouse model with an error-prone mtDNA polymerase, we here investigated the impact of an established mtDNA mutational load with regards to the generation, maintenance, and differentiation of induced pluripotent stem (iPS) cells. We demonstrate that somatic cells with a heavy mtDNA mutation burden were amenable for reprogramming into iPS cells. However, mutator iPS cells displayed delayed proliferation kinetics and harbored extensive differentiation defects. While mutator iPS cells had normal ATP levels and glycolytic activity, the induction of differentiation coincided with drastic decreases in ATP production and a hyperactive glycolysis. These data demonstrate the differential requirements of mitochondrial integrity for pluripotent stem cell self-renewal versus differentiation and highlight the relevance of assessing the mitochondrial genome when aiming to generate iPS cells with robust differentiation potential.


Asunto(s)
Diferenciación Celular/genética , ADN Mitocondrial/genética , Células Madre Pluripotentes Inducidas/metabolismo , Mutación , Adenosina Trifosfato/metabolismo , Animales , Células Cultivadas , Reprogramación Celular/genética , ADN Polimerasa gamma , ADN Polimerasa Dirigida por ADN/genética , Glucólisis/genética , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Subunidad gamma Común de Receptores de Interleucina/deficiencia , Subunidad gamma Común de Receptores de Interleucina/genética , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Microscopía Electrónica de Transmisión , Mitocondrias/genética , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Factor 3 de Transcripción de Unión a Octámeros/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción SOXB1/genética
5.
Blood Adv ; 7(18): 5382-5395, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37505194

RESUMEN

Acute myeloid leukemia (AML) is initiated and propagated by leukemia stem cells (LSCs), a self-renewing population of leukemia cells responsible for therapy resistance. Hence, there is an urgent need to identify new therapeutic opportunities targeting LSCs. Here, we performed an in vivo CRISPR knockout screen to identify potential therapeutic targets by interrogating cell surface dependencies of LSCs. The facilitated glucose transporter type 1 (GLUT1) emerged as a critical in vivo metabolic dependency for LSCs in a murine MLL::AF9-driven model of AML. GLUT1 disruption by genetic ablation or pharmacological inhibition led to suppression of leukemia progression and improved survival of mice that received transplantation with LSCs. Metabolic profiling revealed that Glut1 inhibition suppressed glycolysis, decreased levels of tricarboxylic acid cycle intermediates and increased the levels of amino acids. This metabolic reprogramming was accompanied by an increase in autophagic activity and apoptosis. Moreover, Glut1 disruption caused transcriptional, morphological, and immunophenotypic changes, consistent with differentiation of AML cells. Notably, dual inhibition of GLUT1 and oxidative phosphorylation (OXPHOS) exhibited synergistic antileukemic effects in the majority of tested primary AML patient samples through restraining of their metabolic plasticity. In particular, RUNX1-mutated primary leukemia cells displayed striking sensitivity to the combination treatment compared with normal CD34+ bone marrow and cord blood cells. Collectively, our study reveals a GLUT1 dependency of murine LSCs in the bone marrow microenvironment and demonstrates that dual inhibition of GLUT1 and OXPHOS is a promising therapeutic approach for AML.


Asunto(s)
Leucemia Mieloide Aguda , Fosforilación Oxidativa , Animales , Ratones , Apoptosis , Médula Ósea/metabolismo , Transportador de Glucosa de Tipo 1/genética , Transportador de Glucosa de Tipo 1/metabolismo , Leucemia Mieloide Aguda/genética , Microambiente Tumoral
6.
Stem Cells ; 29(7): 1158-64, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21544903

RESUMEN

By mimicking embryonic development of the hematopoietic system, we have developed an optimized in vitro differentiation protocol for the generation of precursors of hematopoietic lineages and primitive hematopoietic cells from human embryonic stem cells (ESC) and induced pluripotent stem cells (iPSCs). Factors such as cytokines, extra cellular matrix components, and small molecules as well as the temporal association and concentration of these factors were tested on seven different human ESC and iPSC lines. We report the differentiation of up to 84% human CD45+ cells (average 41% ± 16%, from seven pluripotent lines) from the differentiation culture, including significant numbers of primitive CD45+/CD34+ and CD45+/CD34+/CD38- hematopoietic progenitors. Moreover, the numbers of hematopoietic progenitor cells generated, as measured by colony forming unit assays, were comparable to numbers obtained from fresh umbilical cord blood mononuclear cell isolates on a per CD45+ cell basis. Our approach demonstrates highly efficient generation of multipotent hematopoietic progenitors with among the highest efficiencies reported to date (CD45+/CD34+) using a single standardized differentiation protocol on several human ESC and iPSC lines. Our data add to the cumulating evidence for the existence of an in vitro derived precursor to the hematopoietic stem cell (HSC) with limited engrafting ability in transplanted mice but with multipotent hematopoietic potential. Because this protocol efficiently expands the preblood precursors and hematopoietic progenitors, it is ideal for testing novel factors for the generation and expansion of definitive HSCs with long-term repopulating ability.


Asunto(s)
Células Madre Hematopoyéticas/citología , Células Madre Pluripotentes Inducidas/citología , Animales , Diferenciación Celular/fisiología , Humanos , Ratones , Células Madre Pluripotentes/citología
7.
Nature ; 440(7088): 1123, 2006 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-16641981

RESUMEN

The development of T-cell leukaemia following the otherwise successful treatment of three patients with X-linked severe combined immune deficiency (X-SCID) in gene-therapy trials using haematopoietic stem cells has led to a re-evaluation of this approach. Using a mouse model for gene therapy of X-SCID, we find that the corrective therapeutic gene IL2RG itself can act as a contributor to the genesis of T-cell lymphomas, with one-third of animals being affected. Gene-therapy trials for X-SCID, which have been based on the assumption that IL2RG is minimally oncogenic, may therefore pose some risk to patients.


Asunto(s)
Modelos Animales de Enfermedad , Terapia Genética/efectos adversos , Linfoma de Células T/genética , Oncogenes/genética , Receptores de Interleucina-2/genética , Inmunodeficiencia Combinada Grave/genética , Inmunodeficiencia Combinada Grave/terapia , Animales , Transformación Celular Neoplásica/genética , Ensayos Clínicos como Asunto/efectos adversos , Ensayos Clínicos como Asunto/métodos , Perros , Trasplante de Células Madre Hematopoyéticas , Humanos , Linfoma de Células T/etiología , Ratones , Ratones SCID , Factores de Tiempo
8.
Sci Rep ; 11(1): 17589, 2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-34475502

RESUMEN

During hematopoietic development, definitive hematopoietic cells are derived from hemogenic endothelial (HE) cells through a process known as endothelial to hematopoietic transition (EHT). During EHT, transitioning cells proliferate and undergo progressive changes in gene expression culminating in the new cell identity with corresponding changes in function, phenotype and morphology. However, the metabolic pathways fueling this transition remain unclear. We show here that glutamine is a crucial regulator of EHT and a rate limiting metabolite in the hematopoietic differentiation of HE cells. Intriguingly, different hematopoietic lineages require distinct derivatives of glutamine. While both derivatives, α-ketoglutarate and nucleotides, are required for early erythroid differentiation of HE during glutamine deprivation, lymphoid differentiation relies on α-ketoglutarate alone. Furthermore, treatment of HE cells with α-ketoglutarate in glutamine-free conditions pushes their differentiation towards lymphoid lineages both in vitro and in vivo, following transplantation into NSG mice. Thus, we report an essential role for glutamine metabolism during EHT, regulating both the emergence and the specification of hematopoietic cells through its various derivatives.


Asunto(s)
Glutamina/metabolismo , Hemangioblastos/citología , Hemangioblastos/metabolismo , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Animales , Diferenciación Celular/fisiología , Linaje de la Célula , Proliferación Celular/fisiología , Células Cultivadas , Femenino , Hematopoyesis , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones SCID
9.
Proc Natl Acad Sci U S A ; 104(51): 20507-11, 2007 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-18077355

RESUMEN

We report the successful transplantation of human hepatocytes in immunodeficient, fumarylacetoacetate hydrolase-deficient (fah(-/-)) mice. Engraftment occurs over the entire liver acinus upon transplantation. A few weeks after transplantation, increasing concentrations of human proteins (e.g., human albumin and human C3a) can be measured in the blood of the recipient mouse. No fusion between mouse and human hepatocytes can be detected. Three months after transplantation, up to 20% of the mouse liver is repopulated by human hepatocytes, and sustained expression of lentiviral vector transduced gene can be observed. We further report the development of a hepatocyte transplantation method involving a transcutaneous, intrahepatic injection in neonatal mice. Human hepatocytes engraft over the entire injected lobe with an expansion pattern similar to those observed with intrasplenic transplantation.


Asunto(s)
Quimera , Hepatocitos/trasplante , Tolerancia Inmunológica , Trasplante Heterólogo/métodos , Animales , Proteínas Fluorescentes Verdes/análisis , Proteínas Fluorescentes Verdes/genética , Hepatocitos/citología , Humanos , Hidrolasas/genética , Tolerancia Inmunológica/genética , Ratones , Modelos Animales
10.
Stem Cell Res Ther ; 11(1): 179, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32414402

RESUMEN

BACKGROUND: Infantile malignant osteopetrosis (IMO) is an autosomal recessive disorder characterized by non-functional osteoclasts and a fatal outcome early in childhood. About 50% of patients have mutations in the TCIRG1 gene. METHODS: IMO iPSCs were generated from a patient carrying a homozygous c.11279G>A (IVS18+1) mutation in TCIRG1 and transduced with a lentiviral vector expressing human TCIRG1. Embryoid bodies were generated and differentiated into monocytes. Non-adherent cells were harvested and further differentiated into osteoclasts on bovine bone slices. RESULTS: Release of the bone resorption biomarker CTX-I into the media of gene-corrected osteoclasts was 5-fold higher than that of the uncorrected osteoclasts and 35% of that of control osteoclasts. Bone resorption potential was confirmed by the presence of pits on the bones cultured with gene-corrected osteoclasts, absent in the uncorrected IMO osteoclasts. CONCLUSIONS: The disease phenotype was partially corrected in vitro, providing a valuable resource for therapy development for this form of severe osteopetrosis.


Asunto(s)
Resorción Ósea , Células Madre Pluripotentes Inducidas , Osteopetrosis , ATPasas de Translocación de Protón Vacuolares , Animales , Resorción Ósea/genética , Bovinos , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Mutación , Osteoclastos/metabolismo , Osteopetrosis/genética , ATPasas de Translocación de Protón Vacuolares/genética , ATPasas de Translocación de Protón Vacuolares/metabolismo
11.
Stem Cell Res Ther ; 8(1): 190, 2017 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-28841906

RESUMEN

BACKGROUND: Mesenchymal stromal cells (MSCs) are currently being evaluated in numerous pre-clinical and clinical cell-based therapy studies. Furthermore, there is an increasing interest in exploring alternative uses of these cells in disease modelling, pharmaceutical screening, and regenerative medicine by applying reprogramming technologies. However, the limited availability of MSCs from various sources restricts their use. Term amniotic fluid has been proposed as an alternative source of MSCs. Previously, only low volumes of term fluid and its cellular constituents have been collected, and current knowledge of the MSCs derived from this fluid is limited. In this study, we collected amniotic fluid at term using a novel collection system and evaluated amniotic fluid MSC content and their characteristics, including their feasibility to undergo cellular reprogramming. METHODS: Amniotic fluid was collected at term caesarean section deliveries using a closed catheter-based system. Following fluid processing, amniotic fluid was assessed for cellularity, MSC frequency, in-vitro proliferation, surface phenotype, differentiation, and gene expression characteristics. Cells were also reprogrammed to the pluripotent stem cell state and differentiated towards neural and haematopoietic lineages. RESULTS: The average volume of term amniotic fluid collected was approximately 0.4 litres per donor, containing an average of 7 million viable mononuclear cells per litre, and a CFU-F content of 15 per 100,000 MNCs. Expanded CFU-F cultures showed similar surface phenotype, differentiation potential, and gene expression characteristics to MSCs isolated from traditional sources, and showed extensive expansion potential and rapid doubling times. Given the high proliferation rates of these neonatal source cells, we assessed them in a reprogramming application, where the derived induced pluripotent stem cells showed multigerm layer lineage differentiation potential. CONCLUSIONS: The potentially large donor base from caesarean section deliveries, the high yield of term amniotic fluid MSCs obtainable, the properties of the MSCs identified, and the suitability of the cells to be reprogrammed into the pluripotent state demonstrated these cells to be a promising and plentiful resource for further evaluation in bio-banking, cell therapy, disease modelling, and regenerative medicine applications.


Asunto(s)
Líquido Amniótico/citología , Tratamiento Basado en Trasplante de Células y Tejidos , Reprogramación Celular , Células Madre Mesenquimatosas/citología , Adipogénesis , Adhesión Celular , Diferenciación Celular , Línea Celular , Linaje de la Célula , Proliferación Celular , Separación Celular , Células Epiteliales/citología , Femenino , Fibroblastos/citología , Hematopoyesis , Humanos , Recién Nacido , Neuronas/citología , Osteogénesis , Células Madre Pluripotentes/citología , Embarazo
12.
Stem Cell Res Ther ; 8(1): 207, 2017 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-28962665

RESUMEN

BACKGROUND: Human fibroblasts can be directly converted to several subtypes of neurons, but cortical projection neurons have not been generated. METHODS: Here we screened for transcription factor combinations that could potentially convert human fibroblasts to functional excitatory cortical neurons. The induced cortical (iCtx) cells were analyzed for cortical neuronal identity using immunocytochemistry, single-cell quantitative polymerase chain reaction (qPCR), electrophysiology, and their ability to integrate into human neural networks in vitro and ex vivo using electrophysiology and rabies virus tracing. RESULTS: We show that a combination of three transcription factors, BRN2, MYT1L, and FEZF2, have the ability to directly convert human fibroblasts to functional excitatory cortical neurons. The conversion efficiency was increased to about 16% by treatment with small molecules and microRNAs. The iCtx cells exhibited electrophysiological properties of functional neurons, had pyramidal-like cell morphology, and expressed key cortical projection neuronal markers. Single-cell analysis of iCtx cells revealed a complex gene expression profile, a subpopulation of them displaying a molecular signature closely resembling that of human fetal primary cortical neurons. The iCtx cells received synaptic inputs from co-cultured human fetal primary cortical neurons, contained spines, and expressed the postsynaptic excitatory scaffold protein PSD95. When transplanted ex vivo to organotypic cultures of adult human cerebral cortex, the iCtx cells exhibited morphological and electrophysiological properties of mature neurons, integrated structurally into the cortical tissue, and received synaptic inputs from adult human neurons. CONCLUSIONS: Our findings indicate that functional excitatory cortical neurons, generated here for the first time by direct conversion of human somatic cells, have the capacity for synaptic integration into adult human cortex.


Asunto(s)
Corteza Cerebral/citología , Células Madre Embrionarias/citología , Fibroblastos/citología , Neurogénesis , Neuronas/citología , Adulto , Células Cultivadas , Células Madre Embrionarias/metabolismo , Potenciales Postsinápticos Excitadores , Fibroblastos/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Neuronas/fisiología , Factores del Dominio POU/genética , Factores del Dominio POU/metabolismo , Sinapsis/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
13.
Cell Rep ; 19(1): 10-19, 2017 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-28380349

RESUMEN

During development, hematopoietic cells originate from endothelium in a process known as endothelial-to-hematopoietic transition (EHT). To study human EHT, we coupled flow cytometry and single-cell transcriptional analyses of human pluripotent stem cell-derived CD34+ cells. The resulting transcriptional hierarchy showed a continuum of endothelial and hematopoietic signatures. At the interface of these two signatures, a unique group of cells displayed both an endothelial signature and high levels of key hematopoietic stem cell-associated genes. This interphase group was validated via sort and subculture as an immediate precursor to hematopoietic cells. Differential expression analyses further divided this population into subgroups, which, upon subculture, showed distinct hematopoietic lineage differentiation potentials. We therefore propose that immediate precursors to hematopoietic cells already have their hematopoietic lineage restrictions defined prior to complete downregulation of the endothelial signature. These findings increase our understanding of the processes of de novo hematopoietic cell generation in the human developmental context.


Asunto(s)
Células Endoteliales/metabolismo , Hematopoyesis/fisiología , Células Madre Hematopoyéticas/metabolismo , Células Madre Pluripotentes/metabolismo , Antígenos CD34/metabolismo , Linaje de la Célula , Células Cultivadas , Regulación hacia Abajo , Células Endoteliales/citología , Endotelio/metabolismo , Citometría de Flujo , Células Madre Hematopoyéticas/citología , Humanos , Leucosialina/metabolismo , Células Madre Pluripotentes/citología , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-ets/metabolismo , Proteínas Represoras/metabolismo , Análisis de la Célula Individual , Proteína del Síndrome de Wiskott-Aldrich/metabolismo , Proteína ETS de Variante de Translocación 6
14.
Stem Cell Reports ; 6(5): 692-703, 2016 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-27117782

RESUMEN

Hematopoietic cells emerge from hemogenic endothelium in the developing embryo. Mechanisms behind human hematopoietic stem and progenitor cell development remain unclear. Using a human pluripotent stem cell differentiation model, we report that cyclic AMP (cAMP) induction dramatically increases HSC-like cell frequencies. We show that hematopoietic cell generation requires cAMP signaling through the Exchange proteins activated by cAMP (cAMP-Epac) axis; Epac signaling inhibition decreased both hemogenic and non-hemogenic endothelium, and abrogated hematopoietic cell generation. Furthermore, in hematopoietic progenitor and stem-like cells, cAMP induction mitigated oxidative stress, created a redox-state balance, and enhanced C-X-C chemokine receptor type 4 (CXCR4) expression, benefiting the maintenance of these primitive cells. Collectively, our study provides insights and mechanistic details on the previously unrecognized role of cAMP signaling in regulating human hematopoietic development. These findings advance the mechanistic understanding of hematopoietic development toward the development of transplantable human hematopoietic cells for therapeutic needs.


Asunto(s)
Diferenciación Celular/genética , Factores de Intercambio de Guanina Nucleótido/genética , Células Madre Hematopoyéticas/metabolismo , Células Madre Pluripotentes/metabolismo , Receptores CXCR4/genética , AMP Cíclico/genética , Endotelio/crecimiento & desarrollo , Endotelio/metabolismo , Regulación del Desarrollo de la Expresión Génica , Humanos , Estrés Oxidativo/genética , Transducción de Señal
15.
Stem Cell Reports ; 6(2): 200-12, 2016 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-26777058

RESUMEN

Reports on the retention of somatic cell memory in induced pluripotent stem cells (iPSCs) have complicated the selection of the optimal cell type for the generation of iPSC biobanks. To address this issue we compared transcriptomic, epigenetic, and differentiation propensities of genetically matched human iPSCs derived from fibroblasts and blood, two tissues of the most practical relevance for biobanking. Our results show that iPSC lines derived from the same donor are highly similar to each other. However, genetic variation imparts a donor-specific expression and methylation profile in reprogrammed cells that leads to variable functional capacities of iPSC lines. Our results suggest that integration-free, bona fide iPSC lines from fibroblasts and blood can be combined in repositories to form biobanks. Due to the impact of genetic variation on iPSC differentiation, biobanks should contain cells from large numbers of donors.


Asunto(s)
Diferenciación Celular/genética , Variación Genética , Células Madre Pluripotentes Inducidas/citología , Bancos de Muestras Biológicas , Metilación de ADN/genética , Epigénesis Genética , Células Eritroides/citología , Femenino , Fibroblastos/metabolismo , Hematopoyesis/genética , Humanos , Masculino , Donantes de Tejidos , Transcripción Genética
16.
Stem Cell Reports ; 4(2): 269-81, 2015 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-25680478

RESUMEN

The functions of retinoic acid (RA), a potent morphogen with crucial roles in embryogenesis including developmental hematopoiesis, have not been thoroughly investigated in the human setting. Using an in vitro model of human hematopoietic development, we evaluated the effects of RA signaling on the development of blood and on generated hematopoietic progenitors. Decreased RA signaling increases the generation of cells with a hematopoietic stem cell (HSC)-like phenotype, capable of differentiation into myeloid and lymphoid lineages, through two separate mechanisms: by increasing the commitment of pluripotent stem cells toward the hematopoietic lineage during the developmental process and by decreasing the differentiation of generated blood progenitors. Our results demonstrate that controlled low-level RA signaling is a requirement in human blood development, and we propose a new interpretation of RA as a regulatory factor, where appropriate control of RA signaling enables increased generation of hematopoietic progenitor cells from pluripotent stem cells in vitro.


Asunto(s)
Hematopoyesis/efectos de los fármacos , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/efectos de los fármacos , Tretinoina/farmacología , Diferenciación Celular/efectos de los fármacos , Línea Celular , Linaje de la Célula/efectos de los fármacos , Ensayo de Unidades Formadoras de Colonias , Células Madre Embrionarias/citología , Células Madre Embrionarias/efectos de los fármacos , Células Madre Embrionarias/metabolismo , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/metabolismo , Humanos , Inmunofenotipificación , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Fenotipo , Células Madre Pluripotentes/metabolismo , Transducción de Señal/efectos de los fármacos
17.
Hum Gene Ther ; 22(12): 1593-8, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21846246

RESUMEN

Acute promyelocytic leukemia (APL) results from a chromosomal translocation that gives rise to the leukemogenic fusion protein PML-RARα (promyelocytic leukemia-retinoic acid α receptor). Differentiation of leukemic cells and complete remission of APL are achieved by treatment of patients with pharmacological doses of all-trans retinoic acid (ATRA), making APL a model disease for differentiation therapy. However, because patients are resistant to further treatment with ATRA on relapse, it is necessary to develop alternative treatment strategies to specifically target APL. We therefore sought to develop a treatment strategy based on lentiviral vector-mediated delivery of small interfering RNA (siRNA) that specifically targets the breakpoint region of PML-RARα. Unlike treatment with ATRA, which resulted in differentiation of leukemic NB4 cells, delivery of siRNA targeting PML-RARα into NB4 cells resulted in both differentiation and apoptosis, consistent with the specific knockdown of PML-RARα. Intraperitoneal injection of NB4 cells transduced with lentiviral vectors delivering PML-RARα-specific siRNA but not control siRNA prevented development of disease in nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice. Taken together, these results indicate that development of PML-RARα-specific siRNA may represent a promising treatment strategy for ATRA-resistant APL.


Asunto(s)
Apoptosis , Diferenciación Celular , Vectores Genéticos/uso terapéutico , Lentivirus/genética , Leucemia Promielocítica Aguda/patología , Leucemia Promielocítica Aguda/terapia , Proteínas de Fusión Oncogénica/antagonistas & inhibidores , ARN Interferente Pequeño/genética , Animales , Antineoplásicos/farmacología , Western Blotting , Células Cultivadas , Resistencia a Antineoplásicos , Femenino , Citometría de Flujo , Humanos , Inyecciones Intraperitoneales , Leucemia Promielocítica Aguda/genética , Ratones , Ratones Endogámicos NOD , Ratones SCID , Proteínas de Fusión Oncogénica/genética , Tretinoina/farmacología
18.
Cell Metab ; 10(5): 419-29, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19883619

RESUMEN

Chronic low-grade inflammation, particularly in adipose tissue, is an important modulator of obesity-induced insulin resistance. The Toll-like receptor 4 (Tlr4) is a key initiator of inflammatory responses in macrophages. We performed bone marrow transplantation (BMT) of Tlr4lps-del or control C57Bl/10J donor cells into irradiated wild-type C57Bl6 recipient mice to generate hematopoietic cell-specific Tlr4 deletion mutant (BMT-Tlr4(-/-)) and control (BMT-WT) mice. After 16 weeks of a high-fat diet (HFD), BMT-WT mice developed obesity, hyperinsulinemia, glucose intolerance, and insulin resistance. In contrast, BMT-Tlr4(-/-) mice became obese but did not develop fasting hyperinsulinemia and had improved hepatic and adipose insulin sensitivity during euglycemic clamp studies, compared to HFD BMT-WT controls. HFD BMT-Tlr4(-/-) mice also showed markedly reduced adipose tissue inflammatory markers and macrophage content. In summary, our results indicate that Tlr4 signaling in hematopoietic-derived cells is important for the development of hepatic and adipose tissue insulin resistance in obese mice.


Asunto(s)
Tejido Adiposo/metabolismo , Células Madre Hematopoyéticas/metabolismo , Resistencia a la Insulina/fisiología , Hígado/metabolismo , Obesidad/metabolismo , Receptor Toll-Like 4/antagonistas & inhibidores , Receptor Toll-Like 4/metabolismo , Tejido Adiposo/patología , Animales , Grasas de la Dieta/administración & dosificación , Técnicas de Inactivación de Genes , Técnica de Clampeo de la Glucosa , Intolerancia a la Glucosa/genética , Intolerancia a la Glucosa/metabolismo , Macrófagos/metabolismo , Ratones , Ratones Obesos , Obesidad/etiología , Obesidad/patología , Especificidad de Órganos , Transducción de Señal/fisiología , Receptor Toll-Like 4/genética
19.
Blood ; 101(4): 1284-9, 2003 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-12393514

RESUMEN

Efficient vector transduction of hematopoietic stem cells is a requirement for successful gene therapy of hematologic disorders. We asked whether human umbilical cord blood CD34(+)CD38(lo) nonobese diabetic/severe combined immunodeficiency (NOD/SCID) repopulating cells (SRCs) could be efficiently transduced using lentiviral vectors, with a particular focus on the average number of vector copies integrating into these primitive progenitor cells. Mouse bone marrow was analyzed by fluorescence-activated cell-sorter scanner and by semiquantitative polymerase chain reaction (PCR) to determine the transduction efficiency into SRCs. Lentiviral vector transduction resulted in an average of 22% (range, 3%-90%) of the human cells expressing green fluorescent protein (GFP), however, multiple vector copies were present in human hematopoietic cells, with an average of 5.6 +/- 3.3 (n = 12) copies per transduced cell. To confirm the ability of lentiviral vectors to integrate multiple vector copies into SRCs, linear amplification mediated (LAM)-PCR was used to analyze the integration site profile of a selected mouse showing low-level engraftment and virtually all human cells expressing GFP. Individually picked granulocyte macrophage colony-forming unit colonies derived from the bone marrow of this mouse were analyzed and shown to have the same 5 vector integrants within each colony. Interestingly, one integration site of the 5 that were sequenced in this mouse was located in a known tumor-suppressor gene, BRCA1. Therefore, these findings demonstrate the ability of lentiviral vectors to transduce multiple copies into a subset of NOD/SCID repopulating cells. While this is efficient in terms of transduction and transgene expression, it may increase the risk of insertional mutagenesis.


Asunto(s)
Vectores Genéticos , Lentivirus/genética , Mutagénesis Insercional , Transfección , Integración Viral , ADP-Ribosil Ciclasa/análisis , ADP-Ribosil Ciclasa 1 , Animales , Antígenos CD/análisis , Antígenos CD34/análisis , Células de la Médula Ósea , Ensayo de Unidades Formadoras de Colonias , Sangre Fetal/citología , Citometría de Flujo , Genes Supresores de Tumor , Granulocitos , Proteínas Fluorescentes Verdes , Humanos , Proteínas Luminiscentes/genética , Macrófagos , Glicoproteínas de Membrana , Ratones , Ratones Endogámicos NOD , Ratones SCID , Reacción en Cadena de la Polimerasa , Trasplante de Células Madre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA