Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Nature ; 444(7118): 444-54, 2006 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-17122850

RESUMEN

Copy number variation (CNV) of DNA sequences is functionally significant but has yet to be fully ascertained. We have constructed a first-generation CNV map of the human genome through the study of 270 individuals from four populations with ancestry in Europe, Africa or Asia (the HapMap collection). DNA from these individuals was screened for CNV using two complementary technologies: single-nucleotide polymorphism (SNP) genotyping arrays, and clone-based comparative genomic hybridization. A total of 1,447 copy number variable regions (CNVRs), which can encompass overlapping or adjacent gains or losses, covering 360 megabases (12% of the genome) were identified in these populations. These CNVRs contained hundreds of genes, disease loci, functional elements and segmental duplications. Notably, the CNVRs encompassed more nucleotide content per genome than SNPs, underscoring the importance of CNV in genetic diversity and evolution. The data obtained delineate linkage disequilibrium patterns for many CNVs, and reveal marked variation in copy number among populations. We also demonstrate the utility of this resource for genetic disease studies.


Asunto(s)
Variación Genética , Genoma Humano , Mapeo Cromosómico , Dosificación de Gen , Genética de Población , Genómica/métodos , Genotipo , Humanos , Desequilibrio de Ligamiento , Técnicas de Diagnóstico Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Polimorfismo de Nucleótido Simple
2.
PLoS One ; 6(5): e14814, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21637334

RESUMEN

BACKGROUND: Due to the increased accuracy of Copy Number Variable region (CNV) break point mapping, it is now possible to say with a reasonable degree of confidence whether a gene (i) falls entirely within a CNV; (ii) overlaps the CNV or (iii) actually contains the CNV. We classify these as type I, II and III CNV genes respectively. PRINCIPAL FINDINGS: Here we show that although type I genes vary in copy number along with the CNV, most of these type I genes have the same expression levels as wild type copy numbers of the gene. These genes must, therefore, be under homeostatic dosage compensation control. Looking into possible mechanisms for the regulation of gene expression we found that type I genes have a significant paucity of genes regulated by miRNAs and are not significantly enriched for monoallelically expressed genes. Type III genes, on the other hand, have a significant excess of genes regulated by miRNAs and are enriched for genes that are monoallelically expressed. SIGNIFICANCE: Many diseases and genomic disorders are associated with CNVs so a better understanding of the different ways genes are associated with normal CNVs will help focus on candidate genes in genome wide association studies.


Asunto(s)
Variaciones en el Número de Copia de ADN/genética , Genes/genética , Alelos , Análisis por Conglomerados , Regulación de la Expresión Génica , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Anotación de Secuencia Molecular , Programas Informáticos
3.
Investig Genet ; 2(1): 24, 2011 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-22133426

RESUMEN

BACKGROUND: Numerous genome-wide scans conducted by genotyping previously ascertained single-nucleotide polymorphisms (SNPs) have provided candidate signatures for positive selection in various regions of the human genome, including in genes involved in pigmentation traits. However, it is unclear how well the signatures discovered by such haplotype-based test statistics can be reproduced in tests based on full resequencing data. Four genes (oculocutaneous albinism II (OCA2), tyrosinase-related protein 1 (TYRP1), dopachrome tautomerase (DCT), and KIT ligand (KITLG)) implicated in human skin-color variation, have shown evidence for positive selection in Europeans and East Asians in previous SNP-scan data. In the current study, we resequenced 4.7 to 6.7 kb of DNA from each of these genes in Africans, Europeans, East Asians, and South Asians. RESULTS: Applying all commonly used neutrality-test statistics for allele frequency distribution to the newly generated sequence data provided conflicting results regarding evidence for positive selection. Previous haplotype-based findings could not be clearly confirmed. Although some tests were marginally significant for some populations and genes, none of them were significant after multiple-testing correction. Combined P values for each gene-population pair did not improve these results. Application of Approximate Bayesian Computation Markov chain Monte Carlo based to these sequence data using a simple forward simulator revealed broad posterior distributions of the selective parameters for all four genes, providing no support for positive selection. However, when we applied this approach to published sequence data on SLC45A2, another human pigmentation candidate gene, we could readily confirm evidence for positive selection, as previously detected with sequence-based and some haplotype-based tests. CONCLUSIONS: Overall, our data indicate that even genes that are strong biological candidates for positive selection and show reproducible signatures of positive selection in SNP scans do not always show the same replicability of selection signals in other tests, which should be considered in future studies on detecting positive selection in genetic data.

4.
Genetics ; 183(3): 1065-77, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19737746

RESUMEN

We have evaluated the extent to which SNPs identified by genomewide surveys as showing unusually high levels of population differentiation in humans have experienced recent positive selection, starting from a set of 32 nonsynonymous SNPs in 27 genes highlighted by the HapMap1 project. These SNPs were genotyped again in the HapMap samples and in the Human Genome Diversity Project-Centre d'Etude du Polymorphisme Humain (HGDP-CEPH) panel of 52 populations representing worldwide diversity; extended haplotype homozygosity was investigated around all of them, and full resequence data were examined for 9 genes (5 from public sources and 4 from new data sets). For 7 of the genes, genotyping errors were responsible for an artifactual signal of high population differentiation and for 2, the population differentiation did not exceed our significance threshold. For the 18 genes with confirmed high population differentiation, 3 showed evidence of positive selection as measured by unusually extended haplotypes within a population, and 7 more did in between-population analyses. The 9 genes with resequence data included 7 with high population differentiation, and 5 showed evidence of positive selection on the haplotype carrying the nonsynonymous SNP from skewed allele frequency spectra; in addition, 2 showed evidence of positive selection on unrelated haplotypes. Thus, in humans, high population differentiation is (apart from technical artifacts) an effective way of enriching for recently selected genes, but is not an infallible pointer to recent positive selection supported by other lines of evidence.


Asunto(s)
Genoma Humano/genética , Haplotipos/genética , Polimorfismo de Nucleótido Simple/genética , Selección Genética , Alcohol Deshidrogenasa/genética , Antígenos CD/genética , Moléculas de Adhesión Celular/genética , ADN Helicasas/genética , Enzimas Reparadoras del ADN/genética , Sistema del Grupo Sanguíneo Duffy/genética , Receptor Edar/genética , Frecuencia de los Genes , Variación Genética , Genética de Población , Genotipo , Factores de Intercambio de Guanina Nucleótido/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de Unión a Poli-ADP-Ribosa , Receptores de Superficie Celular/genética , Análisis de Secuencia de ADN , Ubiquitina-Proteína Ligasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA