Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 171
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Hum Brain Mapp ; 45(13): e70018, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39230193

RESUMEN

The characterisation of resting-state networks (RSNs) using neuroimaging techniques has significantly contributed to our understanding of the organisation of brain activity. Prior work has demonstrated the electrophysiological basis of RSNs and their dynamic nature, revealing transient activations of brain networks with millisecond timescales. While previous research has confirmed the comparability of RSNs identified by electroencephalography (EEG) to those identified by magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI), most studies have utilised static analysis techniques, ignoring the dynamic nature of brain activity. Often, these studies use high-density EEG systems, which limit their applicability in clinical settings. Addressing these gaps, our research studies RSNs using medium-density EEG systems (61 sensors), comparing both static and dynamic brain network features to those obtained from a high-density MEG system (306 sensors). We assess the qualitative and quantitative comparability of EEG-derived RSNs to those from MEG, including their ability to capture age-related effects, and explore the reproducibility of dynamic RSNs within and across the modalities. Our findings suggest that both MEG and EEG offer comparable static and dynamic network descriptions, albeit with MEG offering some increased sensitivity and reproducibility. Such RSNs and their comparability across the two modalities remained consistent qualitatively but not quantitatively when the data were reconstructed without subject-specific structural MRI images.


Asunto(s)
Electroencefalografía , Magnetoencefalografía , Red Nerviosa , Humanos , Magnetoencefalografía/métodos , Electroencefalografía/métodos , Adulto , Red Nerviosa/fisiología , Red Nerviosa/diagnóstico por imagen , Masculino , Femenino , Adulto Joven , Persona de Mediana Edad , Imagen por Resonancia Magnética/métodos , Anciano , Conectoma/métodos , Adolescente , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen , Descanso/fisiología
2.
Hum Brain Mapp ; 45(7): e26700, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38726799

RESUMEN

The post-movement beta rebound has been studied extensively using magnetoencephalography (MEG) and is reliably modulated by various task parameters as well as illness. Our recent study showed that rebounds, which we generalise as "post-task responses" (PTRs), are a ubiquitous phenomenon in the brain, occurring across the cortex in theta, alpha, and beta bands. Currently, it is unknown whether PTRs following working memory are driven by transient bursts, which are moments of short-lived high amplitude activity, similar to those that drive the post-movement beta rebound. Here, we use three-state univariate hidden Markov models (HMMs), which can identify bursts without a priori knowledge of frequency content or response timings, to compare bursts that drive PTRs in working memory and visuomotor MEG datasets. Our results show that PTRs across working memory and visuomotor tasks are driven by pan-spectral transient bursts. These bursts have very similar spectral content variation over the cortex, correlating strongly between the two tasks in the alpha (R2 = .89) and beta (R2 = .53) bands. Bursts also have similar variation in duration over the cortex (e.g., long duration bursts occur in the motor cortex for both tasks), strongly correlating over cortical regions between tasks (R2 = .56), with a mean over all regions of around 300 ms in both datasets. Finally, we demonstrate the ability of HMMs to isolate signals of interest in MEG data, such that the HMM probability timecourse correlates more strongly with reaction times than frequency filtered power envelopes from the same brain regions. Overall, we show that induced PTRs across different tasks are driven by bursts with similar characteristics, which can be identified using HMMs. Given the similarity between bursts across tasks, we suggest that PTRs across the cortex may be driven by a common underlying neural phenomenon.


Asunto(s)
Magnetoencefalografía , Memoria a Corto Plazo , Humanos , Memoria a Corto Plazo/fisiología , Adulto , Masculino , Femenino , Adulto Joven , Cadenas de Markov , Desempeño Psicomotor/fisiología , Corteza Cerebral/fisiología , Movimiento/fisiología , Ritmo beta/fisiología
3.
Hum Brain Mapp ; 45(10): e26782, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38989630

RESUMEN

This study assesses the reliability of resting-state dynamic causal modelling (DCM) of magnetoencephalography (MEG) under conductance-based canonical microcircuit models, in terms of both posterior parameter estimates and model evidence. We use resting-state MEG data from two sessions, acquired 2 weeks apart, from a cohort with high between-subject variance arising from Alzheimer's disease. Our focus is not on the effect of disease, but on the reliability of the methods (as within-subject between-session agreement), which is crucial for future studies of disease progression and drug intervention. To assess the reliability of first-level DCMs, we compare model evidence associated with the covariance among subject-specific free energies (i.e., the 'quality' of the models) with versus without interclass correlations. We then used parametric empirical Bayes (PEB) to investigate the differences between the inferred DCM parameter probability distributions at the between subject level. Specifically, we examined the evidence for or against parameter differences (i) within-subject, within-session, and between-epochs; (ii) within-subject between-session; and (iii) within-site between-subjects, accommodating the conditional dependency among parameter estimates. We show that for data acquired close in time, and under similar circumstances, more than 95% of inferred DCM parameters are unlikely to differ, speaking to mutual predictability over sessions. Using PEB, we show a reciprocal relationship between a conventional definition of 'reliability' and the conditional dependency among inferred model parameters. Our analyses confirm the reliability and reproducibility of the conductance-based DCMs for resting-state neurophysiological data. In this respect, the implicit generative modelling is suitable for interventional and longitudinal studies of neurological and psychiatric disorders.


Asunto(s)
Enfermedad de Alzheimer , Magnetoencefalografía , Humanos , Magnetoencefalografía/métodos , Magnetoencefalografía/normas , Reproducibilidad de los Resultados , Enfermedad de Alzheimer/fisiopatología , Masculino , Femenino , Anciano , Modelos Neurológicos , Teorema de Bayes
4.
Neuroimage ; 282: 120396, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37805019

RESUMEN

Multivariate pattern analysis (MVPA) of Magnetoencephalography (MEG) and Electroencephalography (EEG) data is a valuable tool for understanding how the brain represents and discriminates between different stimuli. Identifying the spatial and temporal signatures of stimuli is typically a crucial output of these analyses. Such analyses are mainly performed using linear, pairwise, sliding window decoding models. These allow for relative ease of interpretation, e.g. by estimating a time-course of decoding accuracy, but have limited decoding performance. On the other hand, full epoch multiclass decoding models, commonly used for brain-computer interface (BCI) applications, can provide better decoding performance. However interpretation methods for such models have been designed with a low number of classes in mind. In this paper, we propose an approach that combines a multiclass, full epoch decoding model with supervised dimensionality reduction, while still being able to reveal the contributions of spatiotemporal and spectral features using permutation feature importance. Crucially, we introduce a way of doing supervised dimensionality reduction of input features within a neural network optimised for the classification task, improving performance substantially. We demonstrate the approach on 3 different many-class task-MEG datasets using image presentations. Our results demonstrate that this approach consistently achieves higher accuracy than the peak accuracy of a sliding window decoder while estimating the relevant spatiotemporal features in the MEG signal.


Asunto(s)
Interfaces Cerebro-Computador , Magnetoencefalografía , Humanos , Magnetoencefalografía/métodos , Encéfalo , Electroencefalografía/métodos , Mapeo Encefálico/métodos , Redes Neurales de la Computación , Algoritmos
5.
Neuroimage ; 277: 120236, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37355200

RESUMEN

Existing whole-brain models are generally tailored to the modelling of a particular data modality (e.g., fMRI or MEG/EEG). We propose that despite the differing aspects of neural activity each modality captures, they originate from shared network dynamics. Building on the universal principles of self-organising delay-coupled nonlinear systems, we aim to link distinct features of brain activity - captured across modalities - to the dynamics unfolding on a macroscopic structural connectome. To jointly predict connectivity, spatiotemporal and transient features of distinct signal modalities, we consider two large-scale models - the Stuart Landau and Wilson and Cowan models - which generate short-lived 40 Hz oscillations with varying levels of realism. To this end, we measure features of functional connectivity and metastable oscillatory modes (MOMs) in fMRI and MEG signals - and compare them against simulated data. We show that both models can represent MEG functional connectivity (FC), functional connectivity dynamics (FCD) and generate MOMs to a comparable degree. This is achieved by adjusting the global coupling and mean conduction time delay and, in the WC model, through the inclusion of balance between excitation and inhibition. For both models, the omission of delays dramatically decreased the performance. For fMRI, the SL model performed worse for FCD and MOMs, highlighting the importance of balanced dynamics for the emergence of spatiotemporal and transient patterns of ultra-slow dynamics. Notably, optimal working points varied across modalities and no model was able to achieve a correlation with empirical FC higher than 0.4 across modalities for the same set of parameters. Nonetheless, both displayed the emergence of FC patterns that extended beyond the constraints of the anatomical structure. Finally, we show that both models can generate MOMs with empirical-like properties such as size (number of brain regions engaging in a mode) and duration (continuous time interval during which a mode appears). Our results demonstrate the emergence of static and dynamic properties of neural activity at different timescales from networks of delay-coupled oscillators at 40 Hz. Given the higher dependence of simulated FC on the underlying structural connectivity, we suggest that mesoscale heterogeneities in neural circuitry may be critical for the emergence of parallel cross-modal functional networks and should be accounted for in future modelling endeavours.


Asunto(s)
Conectoma , Red Nerviosa , Humanos , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiología , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Imagen por Resonancia Magnética/métodos , Conectoma/métodos , Frecuencia Cardíaca
6.
J Neurophysiol ; 130(2): 364-379, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37403598

RESUMEN

Unsupervised, data-driven methods are commonly used in neuroscience to automatically decompose data into interpretable patterns. These patterns differ from one another depending on the assumptions of the models. How these assumptions affect specific data decompositions in practice, however, is often unclear, which hinders model applicability and interpretability. For instance, the hidden Markov model (HMM) automatically detects characteristic, recurring activity patterns (so-called states) from time series data. States are defined by a certain probability distribution, whose state-specific parameters are estimated from the data. But what specific features, from all of those that the data contain, do the states capture? That depends on the choice of probability distribution and on other model hyperparameters. Using both synthetic and real data, we aim to better characterize the behavior of two HMM types that can be applied to electrophysiological data. Specifically, we study which differences in data features (such as frequency, amplitude, or signal-to-noise ratio) are more salient to the models and therefore more likely to drive the state decomposition. Overall, we aim at providing guidance for the appropriate use of this type of analysis on one- or two-channel neural electrophysiological data and an informed interpretation of its results given the characteristics of the data and the purpose of the analysis.NEW & NOTEWORTHY Compared with classical supervised methods, unsupervised methods of analysis have the advantage to be freer of subjective biases. However, it is not always clear what aspects of the data these methods are most sensitive to, which complicates interpretation. Focusing on the hidden Markov model, commonly used to describe electrophysiological data, we explore in detail the nature of its estimates through simulations and real data examples, providing important insights about what to expect from these models.


Asunto(s)
Algoritmos , Aprendizaje Automático no Supervisado , Cadenas de Markov , Probabilidad
7.
Hum Brain Mapp ; 44(17): 6105-6119, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37753636

RESUMEN

Decoding brain imaging data are gaining popularity, with applications in brain-computer interfaces and the study of neural representations. Decoding is typically subject-specific and does not generalise well over subjects, due to high amounts of between subject variability. Techniques that overcome this will not only provide richer neuroscientific insights but also make it possible for group-level models to outperform subject-specific models. Here, we propose a method that uses subject embedding, analogous to word embedding in natural language processing, to learn and exploit the structure in between-subject variability as part of a decoding model, our adaptation of the WaveNet architecture for classification. We apply this to magnetoencephalography data, where 15 subjects viewed 118 different images, with 30 examples per image; to classify images using the entire 1 s window following image presentation. We show that the combination of deep learning and subject embedding is crucial to closing the performance gap between subject- and group-level decoding models. Importantly, group models outperform subject models on low-accuracy subjects (although slightly impair high-accuracy subjects) and can be helpful for initialising subject models. While we have not generally found group-level models to perform better than subject-level models, the performance of group modelling is expected to be even higher with bigger datasets. In order to provide physiological interpretation at the group level, we make use of permutation feature importance. This provides insights into the spatiotemporal and spectral information encoded in the models. All code is available on GitHub (https://github.com/ricsinaruto/MEG-group-decode).


Asunto(s)
Interfaces Cerebro-Computador , Aprendizaje Profundo , Humanos , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Magnetoencefalografía/métodos , Mapeo Encefálico/métodos
8.
Hum Brain Mapp ; 44(1): 66-81, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36259549

RESUMEN

Epilepsy is a highly heterogeneous neurological disorder with variable etiology, manifestation, and response to treatment. It is imperative that new models of epileptiform brain activity account for this variability, to identify individual needs and allow clinicians to curate personalized care. Here, we use a hidden Markov model (HMM) to create a unique statistical model of interictal brain activity for 10 pediatric patients. We use magnetoencephalography (MEG) data acquired as part of standard clinical care for patients at the Children's Hospital of Philadelphia. These data are routinely analyzed using excess kurtosis mapping (EKM); however, as cases become more complex (extreme multifocal and/or polymorphic activity), they become harder to interpret with EKM. We assessed the performance of the HMM against EKM for three patient groups, with increasingly complicated presentation. The difference in localization of epileptogenic foci for the two methods was 7 ± 2 mm (mean ± SD over all 10 patients); and 94% ± 13% of EKM temporal markers were matched by an HMM state visit. The HMM localizes epileptogenic areas (in agreement with EKM) and provides additional information about the relationship between those areas. A key advantage over current methods is that the HMM is a data-driven model, so the output is tuned to each individual. Finally, the model output is intuitive, allowing a user (clinician) to review the result and manually select the HMM epileptiform state, offering multiple advantages over previous methods and allowing for broader implementation of MEG epileptiform analysis in surgical decision-making for patients with intractable epilepsy.


Asunto(s)
Epilepsia Refractaria , Epilepsia , Humanos , Niño , Magnetoencefalografía/métodos , Epilepsia/diagnóstico por imagen , Epilepsia/cirugía , Epilepsia Refractaria/cirugía , Philadelphia , Mapeo Encefálico/métodos , Electroencefalografía/métodos
9.
Brain ; 145(1): 237-250, 2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-34264308

RESUMEN

Exaggerated local field potential bursts of activity at frequencies in the low beta band are a well-established phenomenon in the subthalamic nucleus of patients with Parkinson's disease. However, such activity is only moderately correlated with motor impairment. Here we test the hypothesis that beta bursts are just one of several dynamic states in the subthalamic nucleus local field potential in Parkinson's disease, and that together these different states predict motor impairment with high fidelity. Local field potentials were recorded in 32 patients (64 hemispheres) undergoing deep brain stimulation surgery targeting the subthalamic nucleus. Recordings were performed following overnight withdrawal of anti-parkinsonian medication, and after administration of levodopa. Local field potentials were analysed using hidden Markov modelling to identify transient spectral states with frequencies under 40 Hz. Findings in the low beta frequency band were similar to those previously reported; levodopa reduced occurrence rate and duration of low beta states, and the greater the reductions, the greater the improvement in motor impairment. However, additional local field potential states were distinguished in the theta, alpha and high beta bands, and these behaved in an opposite manner. They were increased in occurrence rate and duration by levodopa, and the greater the increases, the greater the improvement in motor impairment. In addition, levodopa favoured the transition of low beta states to other spectral states. When all local field potential states and corresponding features were considered in a multivariate model it was possible to predict 50% of the variance in patients' hemibody impairment OFF medication, and in the change in hemibody impairment following levodopa. This only improved slightly if signal amplitude or gamma band features were also included in the multivariate model. In addition, it compares with a prediction of only 16% of the variance when using beta bursts alone. We conclude that multiple spectral states in the subthalamic nucleus local field potential have a bearing on motor impairment, and that levodopa-induced shifts in the balance between these states can predict clinical change with high fidelity. This is important in suggesting that some states might be upregulated to improve parkinsonism and in suggesting how local field potential feedback can be made more informative in closed-loop deep brain stimulation systems.


Asunto(s)
Estimulación Encefálica Profunda , Trastornos Motores , Enfermedad de Parkinson , Núcleo Subtalámico , Humanos , Levodopa/farmacología , Levodopa/uso terapéutico , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/tratamiento farmacológico , Núcleo Subtalámico/fisiología
10.
Neuroimage ; 260: 119462, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-35872176

RESUMEN

Decoding of high temporal resolution, stimulus-evoked neurophysiological data is increasingly used to test theories about how the brain processes information. However, a fundamental relationship between the frequency spectra of the neural signal and the subsequent decoding accuracy timecourse is not widely recognised. We show that, in commonly used instantaneous signal decoding paradigms, each sinusoidal component of the evoked response is translated to double its original frequency in the subsequent decoding accuracy timecourses. We therefore recommend, where researchers use instantaneous signal decoding paradigms, that more aggressive low pass filtering is applied with a cut-off at one quarter of the sampling rate, to eliminate representational alias artefacts. However, this does not negate the accompanying interpretational challenges. We show that these can be resolved by decoding paradigms that utilise both a signal's instantaneous magnitude and its local gradient information as features for decoding. On a publicly available MEG dataset, this results in decoding accuracy metrics that are higher, more stable over time, and free of the technical and interpretational challenges previously characterised. We anticipate that a broader awareness of these fundamental relationships will enable stronger interpretations of decoding results by linking them more clearly to the underlying signal characteristics that drive them.


Asunto(s)
Mapeo Encefálico , Encéfalo , Encéfalo/fisiología , Mapeo Encefálico/métodos , Humanos , Neurofisiología
11.
Neuroimage ; 263: 119595, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36041643

RESUMEN

Accurate temporal modelling of functional brain networks is essential in the quest for understanding how such networks facilitate cognition. Researchers are beginning to adopt time-varying analyses for electrophysiological data that capture highly dynamic processes on the order of milliseconds. Typically, these approaches, such as clustering of functional connectivity profiles and Hidden Markov Modelling (HMM), assume mutual exclusivity of networks over time. Whilst a powerful constraint, this assumption may be compromising the ability of these approaches to describe the data effectively. Here, we propose a new generative model for functional connectivity as a time-varying linear mixture of spatially distributed statistical "modes". The temporal evolution of this mixture is governed by a recurrent neural network, which enables the model to generate data with a rich temporal structure. We use a Bayesian framework known as amortised variational inference to learn model parameters from observed data. We call the approach DyNeMo (for Dynamic Network Modes), and show using simulations it outperforms the HMM when the assumption of mutual exclusivity is violated. In resting-state MEG, DyNeMo reveals a mixture of modes that activate on fast time scales of 100-150 ms, which is similar to state lifetimes found using an HMM. In task MEG data, DyNeMo finds modes with plausible, task-dependent evoked responses without any knowledge of the task timings. Overall, DyNeMo provides decompositions that are an approximate remapping of the HMM's while showing improvements in overall explanatory power. However, the magnitude of the improvements suggests that the HMM's assumption of mutual exclusivity can be reasonable in practice. Nonetheless, DyNeMo provides a flexible framework for implementing and assessing future modelling developments.


Asunto(s)
Imagen por Resonancia Magnética , Red Nerviosa , Humanos , Teorema de Bayes , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiología , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Cognición
12.
Hum Brain Mapp ; 43(10): 3062-3085, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35302683

RESUMEN

An emerging goal in neuroscience is tracking what information is represented in brain activity over time as a participant completes some task. While electroencephalography (EEG) and magnetoencephalography (MEG) offer millisecond temporal resolution of how activity patterns emerge and evolve, standard decoding methods present significant barriers to interpretability as they obscure the underlying spatial and temporal activity patterns. We instead propose the use of a generative encoding model framework that simultaneously infers the multivariate spatial patterns of activity and the variable timing at which these patterns emerge on individual trials. An encoding model inversion maps from these parameters to the equivalent decoding model, allowing predictions to be made about unseen test data in the same way as in standard decoding methodology. These SpatioTemporally Resolved MVPA (STRM) models can be flexibly applied to a wide variety of experimental paradigms, including classification and regression tasks. We show that these models provide insightful maps of the activity driving predictive accuracy metrics; demonstrate behaviourally meaningful variation in the timing of pattern emergence on individual trials; and achieve predictive accuracies that are either equivalent or surpass those achieved by more widely used methods. This provides a new avenue for investigating the brain's representational dynamics and could ultimately support more flexible experimental designs in the future.


Asunto(s)
Mapeo Encefálico , Encéfalo , Mapeo Encefálico/métodos , Electroencefalografía/métodos , Humanos , Magnetoencefalografía/métodos , Análisis Multivariante
13.
Hum Brain Mapp ; 43(10): 3207-3220, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35393717

RESUMEN

In posttraumatic stress disorder (PTSD), re-experiencing of the trauma is a hallmark symptom proposed to emerge from a de-contextualised trauma memory. Cognitive therapy for PTSD (CT-PTSD) addresses this de-contextualisation through different strategies. At the brain level, recent research suggests that the dynamics of specific large-scale brain networks play an essential role in both the healthy response to a threatening situation and the development of PTSD. However, very little is known about how these dynamics are altered in the disorder and rebalanced after treatment and successful recovery. Using a data-driven approach and fMRI, we detected recurring large-scale brain functional states with high temporal precision in a population of healthy trauma-exposed and PTSD participants before and after successful CT-PTSD. We estimated the total amount of time that each participant spent on each of the states while being exposed to trauma-related and neutral pictures. We found that PTSD participants spent less time on two default mode subnetworks involved in different forms of self-referential processing in contrast to PTSD participants after CT-PTSD (mtDMN+ and dmDMN+ ) and healthy trauma-exposed controls (only mtDMN+ ). Furthermore, re-experiencing severity was related to decreased time spent on the default mode subnetwork involved in contextualised retrieval of autobiographical memories, and increased time spent on the salience and visual networks. Overall, our results support the hypothesis that PTSD involves an imbalance in the dynamics of specific large-scale brain network states involved in self-referential processes and threat detection, and suggest that successful CT-PTSD might rebalance this dynamic aspect of brain function.


Asunto(s)
Memoria Episódica , Trastornos por Estrés Postraumático , Encéfalo/diagnóstico por imagen , Mapeo Encefálico/métodos , Humanos , Imagen por Resonancia Magnética/métodos , Trastornos por Estrés Postraumático/diagnóstico por imagen , Trastornos por Estrés Postraumático/terapia
14.
Cereb Cortex ; 31(12): 5664-5675, 2021 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-34291294

RESUMEN

Brain decoding can predict visual perception from non-invasive electrophysiological data by combining information across multiple channels. However, decoding methods typically conflate the composite and distributed neural processes underlying perception that are together present in the signal, making it unclear what specific aspects of the neural computations involved in perception are reflected in this type of macroscale data. Using MEG data recorded while participants viewed a large number of naturalistic images, we analytically decomposed the brain signal into its oscillatory and non-oscillatory components, and used this decomposition to show that there are at least three dissociable stimulus-specific aspects to the brain data: a slow, non-oscillatory component, reflecting the temporally stable aspect of the stimulus representation; a global phase shift of the oscillation, reflecting the overall speed of processing of specific stimuli; and differential patterns of phase across channels, likely reflecting stimulus-specific computations. Further, we show that common cognitive interpretations of decoding analysis, in particular about how representations generalize across time, can benefit from acknowledging the multicomponent nature of the signal in the study of perception.


Asunto(s)
Encéfalo , Percepción Visual , Encéfalo/fisiología , Cabeza , Humanos , Estimulación Luminosa/métodos , Percepción Visual/fisiología
15.
Neuroimage ; 243: 118513, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34450262

RESUMEN

A major goal of large-scale brain imaging datasets is to provide resources for investigating heterogeneous populations. Characterisation of functional brain networks for individual subjects from these datasets will have an enormous potential for prediction of cognitive or clinical traits. We propose for the first time a technique, Stochastic Probabilistic Functional Modes (sPROFUMO), that is scalable to UK Biobank (UKB) with expected 100,000 participants, and hierarchically estimates functional brain networks in individuals and the population, while allowing for bidirectional flow of information between the two. Using simulations, we show the model's utility, especially in scenarios that involve significant cross-subject variability, or require delineation of fine-grained differences between the networks. Subsequently, by applying the model to resting-state fMRI from 4999 UKB subjects, we mapped resting state networks (RSNs) in single subjects with greater detail than has been possible previously in UKB (>100 RSNs), and demonstrate that these RSNs can predict a range of sensorimotor and higher-level cognitive functions. Furthermore, we demonstrate several advantages of the model over independent component analysis combined with dual-regression (ICA-DR), particularly with respect to the estimation of the spatial configuration of the RSNs and the predictive power for cognitive traits. The proposed model and results can open a new door for future investigations into individualised profiles of brain function from big data.


Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Red Nerviosa/diagnóstico por imagen , Macrodatos , Humanos , Modelos Estadísticos , Análisis de Regresión
16.
Neuroimage ; 233: 117923, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33662572

RESUMEN

BACKGROUND: Intracranial electroencephalography (iEEG) recordings are used for clinical evaluation prior to surgical resection of the focus of epileptic seizures and also provide a window into normal brain function. A major difficulty with interpreting iEEG results at the group level is inconsistent placement of electrodes between subjects making it difficult to select contacts that correspond to the same functional areas. Recent work using time delay embedded hidden Markov model (HMM) applied to magnetoencephalography (MEG) resting data revealed a distinct set of brain states with each state engaging a specific set of cortical regions. Here we use a rare group dataset with simultaneously acquired resting iEEG and MEG to test whether there is correspondence between HMM states and iEEG power changes that would allow classifying iEEG contacts into functional clusters. METHODS: Simultaneous MEG-iEEG recordings were performed at rest on 11 patients with epilepsy whose intracranial electrodes were implanted for pre-surgical evaluation. Pre-processed MEG sensor data was projected to source space. Time delay embedded HMM was then applied to MEG time series. At the same time, iEEG time series were analyzed with time-frequency decomposition to obtain spectral power changes with time. To relate MEG and iEEG results, correlations were computed between HMM probability time courses of state activation and iEEG power time course from the mid contact pair for each electrode in equally spaced frequency bins and presented as correlation spectra for the respective states and iEEG channels. Association of iEEG electrodes with HMM states based on significant correlations was compared to that based on the distance to peaks in subject-specific state topographies. RESULTS: Five HMM states were inferred from MEG. Two of them corresponded to the left and the right temporal activations and had a spectral signature primarily in the theta/alpha frequency band. All the electrodes had significant correlations with at least one of the states (p < 0.05 uncorrected) and for 27/50 electrodes these survived within-subject FDR correction (q < 0.05). These correlations peaked in the theta/alpha band. There was a highly significant dependence between the association of states and electrodes based on functional correlations and that based on spatial proximity (p = 5.6e-6,χ2 test for independence). Despite the potentially atypical functional anatomy and physiological abnormalities related to epilepsy, HMM model estimated from the patient group was very similar to that estimated from healthy subjects. CONCLUSION: Epilepsy does not preclude HMM analysis of interictal data. The resulting group functional states are highly similar to those reported for healthy controls. Power changes recorded with iEEG correlate with HMM state time courses in the alpha-theta band and the presence of this correlation can be related to the spatial location of electrode contacts close to the individual peaks of the corresponding state topographies. Thus, the hypothesized relation between iEEG contacts and HMM states exists and HMM could be further explored as a method for identifying comparable iEEG channels across subjects for the purposes of group analysis.


Asunto(s)
Encéfalo/fisiología , Análisis de Datos , Electrocorticografía/métodos , Epilepsia/diagnóstico , Epilepsia/fisiopatología , Magnetoencefalografía/métodos , Adolescente , Adulto , Femenino , Humanos , Masculino , Cadenas de Markov , Persona de Mediana Edad , Adulto Joven
17.
J Neurophysiol ; 126(5): 1670-1684, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34614377

RESUMEN

Neurophysiological signals are often noisy, nonsinusoidal, and consist of transient bursts. Extraction and analysis of oscillatory features (such as waveform shape and cross-frequency coupling) in such data sets remains difficult. This limits our understanding of brain dynamics and its functional importance. Here, we develop iterated masking empirical mode decomposition (itEMD), a method designed to decompose noisy and transient single-channel data into relevant oscillatory modes in a flexible, fully data-driven way without the need for manual tuning. Based on empirical mode decomposition (EMD), this technique can extract single-cycle waveform dynamics through phase-aligned instantaneous frequency. We test our method by extensive simulations across different noise, sparsity, and nonsinusoidality conditions. We find itEMD significantly improves the separation of data into distinct nonsinusoidal oscillatory components and robustly reproduces waveform shape across a wide range of relevant parameters. We further validate the technique on multimodal, multispecies electrophysiological data. Our itEMD extracts known rat hippocampal θ waveform asymmetry and identifies subject-specific human occipital α without any prior assumptions about the frequencies contained in the signal. Notably, it does so with significantly less mode mixing compared with existing EMD-based methods. By reducing mode mixing and simplifying interpretation of EMD results, itEMD will enable new analyses into functional roles of neural signals in behavior and disease.NEW & NOTEWORTHY We introduce a novel, data-driven method to identify oscillations in neural recordings. This approach is based on empirical mode decomposition and reduces mixing of components, one of its main problems. The technique is validated and compared with existing methods using simulations and real data. We show our method better extracts oscillations and their properties in highly noisy and nonsinusoidal datasets.


Asunto(s)
Ondas Encefálicas/fisiología , Electroencefalografía/métodos , Fenómenos Electrofisiológicos/fisiología , Procesamiento de Señales Asistido por Computador , Animales , Ratas
18.
J Neurophysiol ; 126(4): 1190-1208, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34406888

RESUMEN

The nonsinusoidal waveform is emerging as an important feature of neuronal oscillations. However, the role of single-cycle shape dynamics in rapidly unfolding brain activity remains unclear. Here, we develop an analytical framework that isolates oscillatory signals from time series using masked empirical mode decomposition to quantify dynamical changes in the shape of individual cycles (along with amplitude, frequency, and phase) with instantaneous frequency. We show how phase-alignment, a process of projecting cycles into a regularly sampled phase grid space, makes it possible to compare cycles of different durations and shapes. "Normalized shapes" can then be constructed with high temporal detail while accounting for differences in both duration and amplitude. We find that the instantaneous frequency tracks nonsinusoidal shapes in both simulated and real data. Notably, in local field potential recordings of mouse hippocampal CA1, we find that theta oscillations have a stereotyped slow-descending slope in the cycle-wise average yet exhibit high variability on a cycle-by-cycle basis. We show how principal component analysis allows identification of motifs of theta cycle waveform that have distinct associations to cycle amplitude, cycle duration, and animal movement speed. By allowing investigation into oscillation shape at high temporal resolution, this analytical framework will open new lines of inquiry into how neuronal oscillations support moment-by-moment information processing and integration in brain networks.NEW & NOTEWORTHY We propose a novel analysis approach quantifying nonsinusoidal waveform shape. The approach isolates oscillations with empirical mode decomposition before waveform shape is quantified using phase-aligned instantaneous frequency. This characterizes the full shape profile of individual cycles while accounting for between-cycle differences in duration, amplitude, and timing. We validated in simulations before applying to identify a range of data-driven nonsinusoidal shape motifs in hippocampal theta oscillations.


Asunto(s)
Ondas Encefálicas/fisiología , Región CA1 Hipocampal/fisiología , Electroencefalografía/métodos , Procesamiento de Señales Asistido por Computador , Animales , Ratones , Ritmo Teta/fisiología
19.
Hum Brain Mapp ; 42(3): 626-643, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33242237

RESUMEN

The pathophysiology of cognitive dysfunction in multiple sclerosis (MS) is still unclear. This magnetoencephalography (MEG) study investigates the impact of MS on brain resting-state functional connectivity (rsFC) and its relationship to disability and cognitive impairment. We investigated rsFC based on power envelope correlation within and between different frequency bands, in a large cohort of participants consisting of 99 MS patients and 47 healthy subjects. Correlations were investigated between rsFC and outcomes on disability, disease duration and 7 neuropsychological scores within each group, while stringently correcting for multiple comparisons and possible confounding factors. Specific dysconnections correlating with MS-induced physical disability and disease duration were found within the sensorimotor and language networks, respectively. Global network-level reductions in within- and cross-network rsFC were observed in the default-mode network. Healthy subjects and patients significantly differed in their scores on cognitive fatigue and verbal fluency. Healthy subjects and patients showed different correlation patterns between rsFC and cognitive fatigue or verbal fluency, both of which involved a shift in patients from the posterior default-mode network to the language network. Introducing electrophysiological rsFC in a regression model of verbal fluency and cognitive fatigue in MS patients significantly increased the explained variance compared to a regression limited to structural MRI markers (relative thalamic volume and lesion load). This MEG study demonstrates that MS induces distinct changes in the resting-state functional brain architecture that relate to disability, disease duration and specific cognitive functioning alterations. It highlights the potential value of electrophysiological intrinsic rsFC for monitoring the cognitive impairment in patients with MS.


Asunto(s)
Corteza Cerebral/fisiopatología , Disfunción Cognitiva/fisiopatología , Conectoma , Red en Modo Predeterminado/fisiopatología , Esclerosis Múltiple/fisiopatología , Red Nerviosa/fisiopatología , Adulto , Disfunción Cognitiva/etiología , Femenino , Humanos , Magnetoencefalografía , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/complicaciones , Índice de Severidad de la Enfermedad
20.
Hum Brain Mapp ; 42(5): 1376-1390, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33247542

RESUMEN

Working memory (WM) problems are frequently present in people with multiple sclerosis (MS). Even though hippocampal damage has been repeatedly shown to play an important role, the underlying neurophysiological mechanisms remain unclear. This study aimed to investigate the neurophysiological underpinnings of WM impairment in MS using magnetoencephalography (MEG) data from a visual-verbal 2-back task. We analysed MEG recordings of 79 MS patients and 38 healthy subjects through event-related fields and theta (4-8 Hz) and alpha (8-13 Hz) oscillatory processes. Data was source reconstructed and parcellated based on previous findings in the healthy subject sample. MS patients showed a smaller maximum theta power increase in the right hippocampus between 0 and 400 ms than healthy subjects (p = .014). This theta power increase value correlated negatively with reaction time on the task in MS (r = -.32, p = .029). Evidence was provided that this relationship could not be explained by a 'common cause' confounding relationship with MS-related neuronal damage. This study provides the first neurophysiological evidence of the influence of hippocampal dysfunction on WM performance in MS.


Asunto(s)
Disfunción Cognitiva/fisiopatología , Hipocampo/fisiopatología , Memoria a Corto Plazo/fisiología , Esclerosis Múltiple/fisiopatología , Ritmo Teta/fisiología , Adulto , Disfunción Cognitiva/etiología , Femenino , Humanos , Magnetoencefalografía , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/complicaciones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA