Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biochemistry ; 53(19): 3248-60, 2014 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-24786965

RESUMEN

The Sec pathway mediates translocation of protein across the inner membrane of bacteria. SecA is a motor protein that drives translocation of preprotein through the SecYEG channel. SecA reversibly dimerizes under physiological conditions, but different dimer interfaces have been observed in SecA crystal structures. Here, we have used biophysical approaches to address the nature of the SecA dimer that exists in solution. We have taken advantage of the extreme salt sensitivity of SecA dimerization to compare the rates of hydrogen-deuterium exchange of the monomer and dimer and have analyzed the effects of single-alanine substitutions on dimerization affinity. Our results support the antiparallel dimer arrangement observed in one of the crystal structures of Bacillus subtilis SecA. Additional residues lying within the preprotein binding domain and the C-terminus are also protected from exchange upon dimerization, indicating linkage to a conformational transition of the preprotein binding domain from an open to a closed state. In agreement with this interpretation, normal mode analysis demonstrates that the SecA dimer interface influences the global dynamics of SecA such that dimerization stabilizes the closed conformation.


Asunto(s)
Adenosina Trifosfatasas/química , Proteínas Bacterianas/química , Escherichia coli/química , Proteínas de Transporte de Membrana/química , Multimerización de Proteína/fisiología , Adenosina Trifosfatasas/genética , Sustitución de Aminoácidos , Bacillus subtilis/química , Bacillus subtilis/genética , Proteínas Bacterianas/genética , Cristalografía por Rayos X , Escherichia coli/genética , Proteínas de Transporte de Membrana/genética , Estructura Cuaternaria de Proteína , Canales de Translocación SEC , Proteína SecA
2.
J Bacteriol ; 195(12): 2817-25, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23585536

RESUMEN

The motor protein SecA is a core component of the bacterial general secretory (Sec) pathway and is essential for cell viability. Despite evidence showing that SecA exists in a dynamic monomer-dimer equilibrium favoring the dimeric form in solution and in the cytoplasm, there is considerable debate as to the quaternary structural organization of the SecA dimer. Here, a site-directed photo-cross-linking technique was utilized to identify residues on the Escherichia coli SecA (ecSecA) dimer interface in the cytosol of intact cells. The feasibility of this method was demonstrated with residue Leu6, which is essential for ecSecA dimerization based on our analytical ultracentrifugation studies of SecA L6A and shown to form the cross-linked SecA dimer in vivo with p-benzoyl-phenylalanine (pBpa) substituted at position 6. Subsequently, the amino terminus (residues 2 to 11) in the nucleotide binding domain (NBD), Phe263 in the preprotein binding domain (PBD), and Tyr794 and Arg805 in the intramolecular regulator of the ATPase 1 domain (IRA1) were identified to be involved in ecSecA dimerization. Furthermore, the incorporation of pBpa at position 805 did not form a cross-linked dimer in the SecA Δ2-11 context, indicating the possibility that the amino terminus may directly contact Arg805 or that the deletion of residues 2 to 11 alters the topology of the naturally occurring ecSecA dimer.


Asunto(s)
Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Escherichia coli/química , Escherichia coli/metabolismo , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/metabolismo , Multimerización de Proteína , Adenosina Trifosfatasas/genética , Proteínas Bacterianas/genética , Escherichia coli/genética , Proteínas de Transporte de Membrana/genética , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Unión Proteica , Estructura Cuaternaria de Proteína , Canales de Translocación SEC , Proteína SecA , Ultracentrifugación
3.
Biophys J ; 98(12): 3015-24, 2010 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-20550914

RESUMEN

Understanding the thermodynamics of substrate selection by DNA polymerase I is important for characterizing the balance between replication and repair for this enzyme in vivo. Due to their sequence and structural similarities, Klenow and Klentaq, the large fragments of the Pol I DNA polymerases from Escherichia coli and Thermus aquaticus, are considered functional homologs. Klentaq, however, does not have a functional proofreading site. Examination of the DNA binding thermodynamics of Klenow and Klentaq to different DNA structures: single-stranded DNA (ss-DNA), primer-template DNA (pt-DNA), and blunt-end double-stranded DNA (ds-DNA) show that the binding selectivity pattern is similar when examined across a wide range of salt concentration, but can significantly differ at any individual salt concentration. For both proteins, binding of single-stranded DNA shifts from weakest to tightest binding of the three structures as the salt concentration increases. Both Klenow and Klentaq release two to three more ions when binding to pt-DNA and ds-DNA than when binding to ss-DNA. Klenow exhibits significant differences in the Delta C(p) of binding to pt-DNA versus ds-DNA, and a difference in pI for these two complexes, whereas Klentaq does not, suggesting that Klenow and Klentaq discriminate between these two structures differently. Taken together, the data suggest that the two polymerases bind ds-DNA very differently, but that both bind pt-DNA and ss-DNA similarly, despite the absence of a proofreading site in Klentaq.


Asunto(s)
ADN Polimerasa I/metabolismo , ADN/química , ADN/metabolismo , Escherichia coli/enzimología , Thermus/enzimología , Secuencias de Aminoácidos , Secuencia de Bases , ADN/genética , ADN Polimerasa I/química , Cartilla de ADN/química , Cartilla de ADN/genética , Cartilla de ADN/metabolismo , ADN de Cadena Simple/química , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Relación Dosis-Respuesta a Droga , Calor , Punto Isoeléctrico , Cloruro de Magnesio/farmacología , Datos de Secuencia Molecular , Cloruro de Potasio/farmacología , Unión Proteica/efectos de los fármacos , Especificidad por Sustrato , Termodinámica
4.
J Mol Biol ; 408(1): 87-98, 2011 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-21315086

RESUMEN

Transport of many proteins to extracytoplasmic locations occurs via the general secretion (Sec) pathway. In Escherichia coli, this pathway is composed of the SecYEG protein-conducting channel and the SecA ATPase. SecA plays a central role in binding the signal peptide region of preproteins, directing preproteins to membrane-bound SecYEG and promoting translocation coupled with ATP hydrolysis. Although it is well established that SecA is crucial for preprotein transport and thus cell viability, its oligomeric state during different stages of transport remains ill defined. We have characterized the energetics of SecA dimerization as a function of salt concentration and temperature and defined the linkage of SecA dimerization and signal peptide binding using analytical ultracentrifugation. The use of a new fluorescence detector permitted an analysis of SecA dimerization down to concentrations as low as 50 nM. The dimer dissociation constants are strongly dependent on salt. Linkage analysis indicates that SecA dimerization is coupled to the release of about five ions, demonstrating that electrostatic interactions play an important role in stabilizing the SecA dimer interface. Binding of signal peptide reduces SecA dimerization affinity, such that K(d) increases about 9-fold from 0.28 µM in the absence of peptide to 2.68 µM in the presence of peptide. The weakening of the SecA dimer that accompanies signal peptide binding may poise the SecA dimer to dissociate upon binding to SecYEG.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/metabolismo , Escherichia coli/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Dimerización , Escherichia coli/crecimiento & desarrollo , Señales de Clasificación de Proteína , Canales de Translocación SEC , Proteína SecA
5.
Methods Cell Biol ; 84: 243-62, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-17964934

RESUMEN

The use of fluorescence anisotropy to monitor protein-DNA interactions has been on the rise since its introduction by Heyduk and Lee in 1990. As a solution-based, true-equilibrium, real-time method, it has several advantages (and a few disadvantages) relative to the more classical methods of filter binding and the electrophoretic mobility shift assay (gel shift). This chapter discusses the basis for monitoring protein-DNA interactions using fluorescence anisotropy, as well as the advantages and disadvantages of the method, but the bulk of the chapter is devoted to experimental tips and guidance meant to augment existing reviews of the method. The focus is on the current primary use of the method: direct measurement of binding isotherms for protein-DNA interactions in vitro. A short summary of emerging applications of the method is also included.


Asunto(s)
ADN/metabolismo , Polarización de Fluorescencia/instrumentación , Polarización de Fluorescencia/métodos , Proteínas/metabolismo , Calibración , ADN Polimerasa Dirigida por ADN/metabolismo , Difusión , Ácido Edético , Cinética , Unión Proteica , Rodaminas/metabolismo , Rotación , Temperatura
6.
Biophys J ; 90(5): 1739-51, 2006 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-16339886

RESUMEN

DNA binding of Klenow polymerase has been characterized with respect to temperature to delineate the thermodynamic driving forces involved in the interaction of this polymerase with primed-template DNA. The temperature dependence of the binding affinity exhibits distinct curvature, with tightest binding at 25-30 degrees C. Nonlinear temperature dependence indicates Klenow binds different primed-template constructs with large heat capacity (DeltaCp) values (-870 to -1220 cal/mole K) and thus exhibits large temperature dependent changes in enthalpy and entropy. Binding is entropy driven at lower temperatures and enthalpy driven at physiological temperatures. Large negative DeltaCp values have been proposed to be a 'signature' of site-specific DNA binding, but type I DNA polymerases do not exhibit significant DNA sequence specificity. We suggest that the binding of Klenow to a specific DNA structure, the primed-template junction, results in a correlated thermodynamic profile that mirrors what is commonly seen for DNA sequence-specific binding proteins. Klenow joins a small number of other DNA-sequence independent DNA binding proteins which exhibit unexpectedly large negative DeltaCp values. Spectroscopic measurements show small conformational rearrangements of both the DNA and Klenow upon binding, and small angle x-ray scattering shows a global induced fit conformational compaction of the protein upon binding. Calculations from both crystal structure and solution structural data indicate that Klenow DNA binding is an exception to the often observed correlation between DeltaCp and changes in accessible surface area. In the case of Klenow, surface area burial can account for only about half of the DeltaCp of binding.


Asunto(s)
ADN Polimerasa I/química , Cartilla de ADN/química , Modelos Químicos , Sitios de Unión , Simulación por Computador , Proteínas de Unión al ADN , Activación Enzimática , Conformación de Ácido Nucleico , Conformación Proteica , Temperatura , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA