Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Eur J Nutr ; 63(5): 1565-1579, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38727803

RESUMEN

PURPOSE: Maternal high-fat diet (HF) programs obesity, metabolic dysfunction-associated steatotic liver disease (MASLD), hypertriglyceridemia, and hyperglycemia associated with increased endocannabinoid system (ECS) in the liver of adult male rat offspring. We hypothesized that maternal HF would induce sex specific ECS changes in the liver of newborn rats, prior to obesity onset, and maternal fish oil (FO) supplementation would reprogram the ECS and lipid metabolism markers preventing liver triglycerides (TG) accumulation. METHODS: Female rats received a control (CT) (10.9% fat) or HF (28.7% fat) diet 8 weeks prior to mating and during pregnancy. A subgroup of HF dams received 3% FO supplementation in the HF diet (35.4% fat) during pregnancy (HFFO). Serum hormones and liver TG, ECS, lipid metabolism, oxidative stress and autophagy markers were assessed in male and female newborn offspring. RESULTS: Maternal HF diet increased liver cannabinoid receptor 1 (CB1) in males and decreased CB2 in females, with no effect on liver TG. Maternal FO supplementation reduced liver CB1 regardless of the offspring sex, but reduced TG liver content only in females. FO reduced the liver content of the endocannabinoid anandamide in males, and the content of 2-arachidonoylglycerol in both sexes. Maternal HF increased lipogenic and decreased lipid oxidation markers, and FO induced the opposite regulation in the liver of offspring. CONCLUSION: Prenatal HF and FO differentially modulate liver ECS in the offspring before obesity and MASLD development. These results suggest that maternal nutrition at critical stages of development can modulate the offspring's ECS, predisposing or preventing the onset of metabolic diseases.


Asunto(s)
Animales Recién Nacidos , Dieta Alta en Grasa , Suplementos Dietéticos , Endocannabinoides , Aceites de Pescado , Lipogénesis , Hígado , Fenómenos Fisiologicos Nutricionales Maternos , Animales , Femenino , Embarazo , Aceites de Pescado/farmacología , Aceites de Pescado/administración & dosificación , Endocannabinoides/metabolismo , Dieta Alta en Grasa/efectos adversos , Hígado/metabolismo , Hígado/efectos de los fármacos , Ratas , Masculino , Lipogénesis/efectos de los fármacos , Biomarcadores/sangre , Biomarcadores/metabolismo , Ratas Wistar , Efectos Tardíos de la Exposición Prenatal , Metabolismo de los Lípidos/efectos de los fármacos , Triglicéridos/sangre
2.
Am J Physiol Endocrinol Metab ; 322(3): E250-E259, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35068177

RESUMEN

Neuromedin B (NB), a bombesin-like peptide, exerts its specific actions by binding to the neuromedin B receptor (NBR), a G protein-coupled receptor. Female NBR-knockout (NBR-KO) mice exhibit resistance to diet-induced obesity, without hyperphagia, suggesting possible increase in energy expenditure. Skeletal muscle (SM) is crucial for whole body energy homeostasis, however, the presence of NB-NBR signaling and its effects in SM are unknown. Here, we show that male and female wild type express Nmbr and Nmb mRNA in SM, with higher levels in females. Female NBR-KO gastrocnemius showed increased Myh7 mRNA level, which characterizes type I fibers (oxidative profile). Their permeabilized gastrocnemius fibers, studied by high-resolution respirometry, exhibited higher consumption of O2 coupled to ATP synthesis and unaltered uncoupled respiration. NBR-KO gastrocnemius had higher protein levels of ATP-synthase and Nduf9 mRNA, corresponding to mitochondrial complex I subunit. NBR-KO gastrocnemius exhibited slight increase in mitochondria number, increased thickness of Z line at electron microscopy, and unaltered mitochondrial dynamics markers. Therefore, in the females' gastrocnemius, a predominantly glycolytic SM, the NBR absence promotes changes that favor mitochondrial oxidative phosphorylation capacity. In addition, in L6 myocytes, NB treatment (5 µg/mL/16 h) promoted lower O2 consumption coupled to ATP synthesis, suggesting direct action at SM cells. Altogether, the study reinforces the hypothesis that inhibition of NB-NBR signaling enhances the capacity for oxidative phosphorylation of white SM, encouraging future studies to elucidate their contribution on other types of SM and whole body energy expenditure, which may lead to a new target to drug development for obesity treatment.NEW & NOTEWORTHY This study describes neuromedin B (NB) and NB receptor as new regulators of skeletal muscle mitochondrial function. The white skeletal muscle mitochondrial oxidative phosphorylation capacity was increased by NB receptor genetic disruption in female mice. These findings may contribute to the resistance to diet-induced obesity, previously found in these mice, which requires future studies. Thus, investigations are necessary to clarify if blockade of NB receptor may be an approach to develop drugs to combat obesity.


Asunto(s)
Fosforilación Oxidativa , Receptores de Bombesina , Adenosina Trifosfato/metabolismo , Animales , Femenino , Masculino , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Mitocondrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Obesidad/metabolismo , ARN Mensajero/metabolismo , Receptores de Bombesina/genética , Receptores de Bombesina/metabolismo
3.
Front Endocrinol (Lausanne) ; 14: 1087999, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36926037

RESUMEN

Introduction: Maternal high-fat (HF) diet during gestation and lactation programs obesity in rat offspring associated with sex-dependent and tissue-specific changes of the endocannabinoid system (ECS). The ECS activation induces food intake and preference for fat as well as lipogenesis. We hypothesized that maternal HF diet would increase the lipid endocannabinoid levels in breast milk programming cannabinoid and dopamine signaling and food preference in rat offspring. Methods: Female Wistar rats were assigned into two experimental groups: control group (C), which received a standard diet (10% fat), or HF group, which received a high-fat diet (29% fat) for 8 weeks before mating and during gestation and lactation. Milk samples were collected to measure endocannabinoids and fatty acids by mass spectrometry. Cannabinoid and dopamine signaling were evaluated in the nucleus accumbens (NAc) of male and female weanling offspring. C and HF offspring received C diet after weaning and food preference was assessed in adolescence. Results: Maternal HF diet reduced the milk content of anandamide (AEA) (p<0.05) and 2-arachidonoylglycerol (2-AG) (p<0.05). In parallel, maternal HF diet increased adiposity in male (p<0.05) and female offspring (p<0.05) at weaning. Maternal HF diet increased cannabinoid and dopamine signaling in the NAc only in male offspring (p<0.05), which was associated with higher preference for fat in adolescence (p<0.05). Conclusion: Contrary to our hypothesis, maternal HF diet reduced AEA and 2-AG in breast milk. We speculate that decreased endocannabinoid exposure during lactation may induce sex-dependent adaptive changes of the cannabinoid-dopamine crosstalk signaling in the developing NAc, contributing to alterations in neurodevelopment and programming of preference for fat in adolescent male offspring.


Asunto(s)
Cannabinoides , Endocannabinoides , Ratas , Animales , Masculino , Femenino , Dieta Alta en Grasa/efectos adversos , Leche , Dopamina , Preferencias Alimentarias , Ratas Wistar , Obesidad
4.
Mol Nutr Food Res ; 67(8): e2200479, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36782400

RESUMEN

SCOPE: Perinatal maternal moderately high-fat diet (mHFD) is associated with obesity and fatty liver disease in offspring, and maternal fish oil (FO: n-3 PUFA source) supplementation may attenuate these disorders. This study evaluates the effects of FO given to pregnant rats fed a mHFD on the offspring's liver at weaning. METHODS AND RESULTS: Female Wistar rats receive an isoenergetic, control (CT: 10.9% from fat) or high-fat (HF: 28.7% from fat) diet before mating, and throughout pregnancy and lactation. FO supplementation (HFFO: 2.9% of FO in the HF diet) is given to one subgroup of HF dams during pregnancy. At weaning, male and female mHFD offspring display higher body mass, adiposity, and hepatic cellular damage, steatosis, and inflammation, accompanied by increased damaged mitochondria. FO does not protect pups from systemic metabolic alterations and partially mitigates hepatic histological damage induced by mHFD only in females. However, FO reduces mRNA expression of lipogenic genes, and mitochondrial damage, and modified mitochondrial morphology suggestive of early adaptations via mitochondrial dynamics. CONCLUSIONS: Gestational FO supplementation has limited beneficial effects on the damage caused by perinatal mHFD consumption in offspring's liver at weaning. However, FO imprinting effect on lipid metabolism and mitochondria may have beneficial long-term outcomes.


Asunto(s)
Aceites de Pescado , Enfermedad del Hígado Graso no Alcohólico , Embarazo , Humanos , Ratas , Masculino , Femenino , Animales , Aceites de Pescado/farmacología , Dieta Alta en Grasa/efectos adversos , Ratas Wistar , Obesidad/metabolismo , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Mitocondrias , Fenómenos Fisiologicos Nutricionales Maternos , Suplementos Dietéticos
5.
Life Sci ; 306: 120831, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-35882274

RESUMEN

AIMS: The endocannabinoid system (ECS) increases food intake, appetite for fat and lipogenesis, while decreases energy expenditure (thermogenesis), contributing to metabolic dysfunctions. We demonstrated that maternal high-fat diet (HFD) alters cannabinoid signaling in brown adipose tissue (BAT) of neonate and weanling male rat offspring, which have increased adiposity but also higher energy expenditure in adulthood. In this study, the main objective was to investigate the ECS expression in thermogenic tissues as BAT and skeletal muscle of adult rats programmed by maternal HFD. We hypothesized that maternal HFD would modulate ECS and energy metabolism markers in BAT and skeletal muscle of adult male offspring. MATERIALS AND METHODS: Female rats received standard diet (9.4 % of calories as fat) or isocaloric HFD (28.9 % of calories as fat) for 8 weeks premating and throughout gestation and lactation. Male offspring were weaned on standard diet and euthanatized in adulthood. KEY FINDINGS: Maternal HFD increased body weight, adiposity, glycemia, leptinemia while decreased testosterone levels in adult offspring. Maternal HFD did not change cannabinoid receptors in BAT or skeletal muscle as hypothesized but increased the content of uncoupling protein and tyrosine hydroxylase (thermogenic markers) in parallel to changes in mitochondrial morphology in skeletal muscle of adult offspring. SIGNIFICANCE: In metabolic programming models, the ECS modulation in the BAT and skeletal muscle may be more important early in life to adapt energy metabolism during maternal dietary insult, and other mechanisms are possibly involved in muscle metabolism long-term regulation.


Asunto(s)
Dieta Alta en Grasa , Termogénesis , Tejido Adiposo Pardo/metabolismo , Adiposidad , Animales , Dieta Alta en Grasa/efectos adversos , Endocannabinoides/metabolismo , Femenino , Masculino , Obesidad/metabolismo , Ratas , Receptores de Cannabinoides
6.
Life Sci ; 307: 120873, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-35952730

RESUMEN

AIMS: Perinatal maternal hypercaloric diets increase the susceptibility to metabolic disorders in the offspring. We hypothesized that maternal intake of an isocaloric moderate-fat diet (mMFD) would disturb the glucose homeostasis and favor the ß-cell failure in response to fructose overload in adult male offspring. METHODS: Female Wistar rats received an isocaloric diet (3.9 kcal/g) containing 29 % (mMFD) or 9 % as fat (mSTD) prior mating and throughout gestation and lactation. After weaning, male offspring received standard chow and fructose-drinking water (15 %) between 120 and 150 days old. KEY FINDINGS: mMFD offspring had higher body weight, visceral adiposity and, fasting glycemia, with normal insulinemia. Fructose increased glycemia at 15 min from oral glucose administration, but only mMFD had returned to basal glucose levels at 120 min. Fructose increased HOMA-IR index regardless diet, but only mMFD exhibited hyperinsulinemia and a higher HOMA-ß index. mMFD pancreatic islets showed increased area and insulin immunostaining density, suggesting ß-cell hypertrophy. Fructose induced the expected compensatory hypertrophy in mSTD islets, while the opposite occurred in mMFD islets, associated with reduced insulin immunostaining, suggesting lower insulin storage. Pancreatic islets isolated from mMFD offspring exhibited higher glucose-stimulated insulin release at physiological concentrations. However, at higher glucose concentrations, the islets from fructose-treated mMFD reduced dramatically their insulin release, suggesting exhaustion. SIGNIFICANCE: Isocaloric mMFD induced adaptive mechanism in the offspring allowing insulin hypersecretion, but under metabolic challenge with fructose, ß-cell compensation shifts to exhaustion, favoring dysfunction. Therefore, a maternal MFD may contribute to developing diabetes under fructose overload in the adult offspring.


Asunto(s)
Agua Potable , Islotes Pancreáticos , Efectos Tardíos de la Exposición Prenatal , Animales , Glucemia/metabolismo , Dieta , Dieta Alta en Grasa , Femenino , Fructosa/efectos adversos , Glucosa , Humanos , Hipertrofia , Insulina , Islotes Pancreáticos/metabolismo , Masculino , Fenómenos Fisiologicos Nutricionales Maternos , Embarazo , Ratas , Ratas Wistar
7.
J Nutr Biochem ; 104: 108976, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35245653

RESUMEN

Maternal high-fat diet (HFD) is associated with metabolic disturbances in the offspring. Fructose is a highly consumed lipogenic sugar; however, it is unknown whether skeletal muscle of maternal HFD offspring respond differentially to a fructose overload. Female Wistar rats received standard diet (STD: 9% fat) or isocaloric high-fat diet (HFD: 29% fat) during 8 weeks before mating until weaning. After weaning, male offspring received STD and, from 120 to 150 days-old, they drank water or 15% fructose in water (STD-F and HFD-F). At 150th day, we collected the oxidative soleus and glycolytic extensor digitorum longus (EDL) muscles. Fructose-treated groups exhibited hypertriglyceridemia, regardless of maternal diet. Soleus of maternal HFD offspring showed increased triglycerides and monounsaturated fatty acid content, independent of fructose, with increased fatty acid transporters and lipogenesis markers. The EDL exhibited unaltered triglycerides content, with an apparent equilibrium between lipogenesis and lipid oxidation markers in HFD, and higher lipid uptake (fatty acid-binding protein 4) accompanied by enhanced monounsaturated fatty acid in fructose-treated groups. Mitochondrial complexes proteins and Tfam mRNA were increased in the soleus of HFD, while uncoupling protein 3 was decreased markedly in HFD-F. In EDL, maternal HFD increased ATP synthase, while fructose decreased Tfam predominantly in STD offspring. Maternal HFD and fructose induced mitochondria ultrastructural damage, intensified in HFD-F in both muscles. Thus, alterations in molecular markers of lipid metabolism and mitochondrial function in response to fructose are modified by an isocaloric and moderate maternal HFD and are fiber-type specific, representing adaptation/maladaptation mechanisms associated with higher skeletal muscle fructose-induced mitochondria injury in adult offspring.


Asunto(s)
Dieta Alta en Grasa , Enfermedades de Transmisión Sexual , Animales , Dieta Alta en Grasa/efectos adversos , Ácidos Grasos Monoinsaturados/metabolismo , Femenino , Fructosa/efectos adversos , Fructosa/metabolismo , Metabolismo de los Lípidos , Masculino , Músculo Esquelético/metabolismo , Ratas , Ratas Wistar , Enfermedades de Transmisión Sexual/metabolismo , Triglicéridos/metabolismo , Agua/metabolismo
8.
Mol Nutr Food Res ; 66(8): e2100514, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35175665

RESUMEN

SCOPE: Perinatal maternal obesity and excessive fructose consumption have been associated with liver metabolic diseases. The study investigates whether moderate maternal high-fat diet affects the liver mitochondria responses to fructose intake in adult offspring. METHODS AND RESULTS: Wistar female rats have received a standard diet (mSTD) or high-fat diet (mHFD) (9% and 28.6% fat, respectively), before mating until the end of lactation. Male offspring were fed standard diet from weaning to adulthood and received water or fructose-drinking water (15%) from 120 to 150 days old. Fructose induces liver mitochondrial ultrastructural alterations with higher intensity in mHFD offspring, accompanied by reduced autophagy markers. Isolated mitochondria respirometry shows unaltered ATP-coupled oxygen consumption with increased Atp5f1b mRNA only in mHFD offspring. Fructose increases basal respiration and encoding complex I-III mRNA, only in mSTD offspring. Uncoupled respiration is lower in mHFD mitochondria that are unable to exhibit fructose-induced increase Ucp2 mRNA. Fructose decreases antioxidative defense markers, increases unfolded protein response and insulin resistance only in mHFD offspring without fructose-induced hepatic lipid accumulation. CONCLUSION: Mitochondrial dysfunction and homeostatic disturbances in response to fructose are early events evidencing the higher risk of fructose damage in the liver of adult offspring from dams fed an isocaloric moderate high-fat diet.


Asunto(s)
Dieta Alta en Grasa , Efectos Tardíos de la Exposición Prenatal , Adulto , Hijos Adultos , Animales , Dieta Alta en Grasa/efectos adversos , Femenino , Fructosa/efectos adversos , Humanos , Masculino , Fenómenos Fisiologicos Nutricionales Maternos , Mitocondrias Hepáticas/metabolismo , Embarazo , ARN Mensajero , Ratas , Ratas Wistar
9.
Front Physiol ; 12: 704044, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34557108

RESUMEN

BACKGROUND: The diaphragm is the primary muscle of inspiration, and its dysfunction is frequent during sepsis. However, the mechanisms associated with sepsis and diaphragm dysfunction are not well understood. In this study, we evaluated the morphophysiological changes of the mitochondrial diaphragm 5 days after sepsis induction. METHODS: Male C57Bl/6 mice were divided into two groups, namely, cecal ligation and puncture (CLP, n = 26) and sham-operated (n = 19). Mice received antibiotic treatment 8 h after surgery and then every 24 h until 5 days after surgery when mice were euthanized and the diaphragms were collected. Also, diaphragm function was evaluated in vivo by ultrasound 120 h after CLP. The tissue fiber profile was evaluated by the expression of myosin heavy chain and SERCA gene by qPCR and myosin protein by using Western blot. The Myod1 and Myog expressions were evaluated by using qPCR. Diaphragm ultrastructure was assessed by electron microscopy, and mitochondrial physiology was investigated by high-resolution respirometry, Western blot, and qPCR. RESULTS: Cecal ligation and puncture mice developed moderated sepsis, with a 74% survivor rate at 120 h. The diaphragm mass did not change in CLP mice compared with control, but we observed sarcomeric disorganization and increased muscle thickness (38%) during inspiration and expiration (21%). Septic diaphragm showed a reduction in fiber myosin type I and IIb mRNA expression by 50% but an increase in MyHC I and IIb protein levels compared with the sham mice. Total and healthy mitochondria were reduced by 30% in septic mice, which may be associated with a 50% decrease in Ppargc1a (encoding PGC1a) and Opa1 (mitochondria fusion marker) expressions in the septic diaphragm. The small and non-functional OPA1 isoform also increased 70% in the septic diaphragm. These data suggest an imbalance in mitochondrial function. In fact, we observed downregulation of all respiratory chain complexes mRNA expression, decreased complex III and IV protein levels, and reduced oxygen consumption associated with ADP phosphorylation (36%) in CLP mice. Additionally, the septic diaphragm increased proton leak and downregulated Sod2 by 70%. CONCLUSION: The current model of sepsis induced diaphragm morphological changes, increased mitochondrial damage, and induced functional impairment. Thus, diaphragm damage during sepsis seems to be associated with mitochondrial dysfunction.

10.
Mol Nutr Food Res ; 64(3): e1900838, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31916388

RESUMEN

SCOPE: Non-alcoholic fatty liver disease (NAFLD) among adolescents has been related to fructose intake. Additionally, maternal high-fat diet (mHFD) increases the offspring susceptibility to NAFLD at adulthood. Here, it is hypothesized that mHFD may exacerbate the fructose impact in adolescent male rat offspring, by changing the response of contributing mechanisms to liver injury. METHODS AND RESULTS: Female Wistar rats receive standard (mSTD: 9% fat) or high-fat diet (mHFD: 29% fat) prior mating throughout pregnancy and lactation. After weaning, offspring receive standard chow and, from the 25th to 45th day, receive water or fructose-drinking water (15%). At 46 days old, fructose groups show increased adiposity, increased serum and hepatic triglycerides, regardless of maternal diet. Fructose aggravates the hepatic imbalance of redox state already exhibited by mHFD offspring. The hepatic activation of cellular repair pathways by fructose, such as unfolded protein response and macroautophagy, is disrupted only in mHFD offspring. Fructose does not change the liver morphology of mSTD offspring. However, it intensifies the liver injury already present in mHFD offspring. CONCLUSION: Fructose intake during adolescence accelerates the emergence of NAFLD observed previously at the adult life of mHFD offspring, and reveals a differentiated hepatic response to metabolic insult, depending on the maternal diet.


Asunto(s)
Dieta Alta en Grasa , Fructosa/toxicidad , Enfermedad del Hígado Graso no Alcohólico/etiología , Envejecimiento , Animales , Autofagia , Peso Corporal , Susceptibilidad a Enfermedades , Estrés del Retículo Endoplásmico , Femenino , Masculino , Fenómenos Fisiologicos Nutricionales Maternos , Enfermedad del Hígado Graso no Alcohólico/patología , Estrés Oxidativo , Embarazo , Ratas Wistar , Triglicéridos/sangre , Respuesta de Proteína Desplegada
11.
J Appl Physiol (1985) ; 129(5): 1062-1074, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32909923

RESUMEN

Obesity is associated with bioenergetic dysfunction of peripheral muscles; however, little is known regarding the impact of obesity on the diaphragm. We hypothesized that obesity would be associated with diaphragm dysfunction attributable to mitochondrial oxygen consumption and structural and ultrastructural changes. Wistar rat litters were culled to 3 pups to induce early postnatal overfeeding and consequent obesity. Control animals were obtained from unculled litters. From postnatal day 150, diaphragm ultrasound, computed tomography, high-resolution respirometry, immunohistochemical, biomolecular, and ultrastructural histological analyses were performed. The diaphragms of obese animals, compared with those of controls, presented changes in morphology as increased thickening fraction, diaphragm excursion, and diaphragm dome height, as well as increased mitochondrial respiratory capacity coupled to ATP synthesis and maximal respiratory capacity. Fatty acid synthase gene expression was also higher in obese animals, suggesting a source of energy for the respiratory chain. Myosin heavy chain-IIA was increased, indicating shift from glycolytic toward oxidative muscle fiber profile. Diaphragm tissue also exhibited ultrastructural changes, such as compact, round, and swollen mitochondria with fainter cristae and more lysosomal bodies. Dynamin-1 expression in the diaphragm was reduced in obese rats, suggesting decreased mitochondrial fission. Furthermore, gene expressions of peroxisome γ proliferator-activated receptor coactivator-1α and superoxide dismutase-2 were lower in obese animals than in controls, which may indicate a predisposition to oxidative injury. In conclusion, in the obesity model used herein, muscle fiber phenotype was altered in a manner likely associated with increased mitochondrial respiratory capability, suggesting respiratory adaptation to increased metabolic demand.NEW & NOTEWORTHY Obesity has been associated with peripheral muscle dysfunction; however, little is known about its impact on the diaphragm. In the current study, we found high oxygen consumption in diaphragm tissue and changes in muscle fiber phenotypes toward a more oxidative profile in experimental obesity.


Asunto(s)
Diafragma , Obesidad , Animales , Diafragma/metabolismo , Metabolismo Energético , Fibras Musculares Esqueléticas , Músculo Esquelético/metabolismo , Obesidad/metabolismo , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA