Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plants (Basel) ; 13(10)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38794365

RESUMEN

Alterations in leaf architecture can be used as an indicator of the substrate toxicity level as well as the potential of a given plant species in the phytoremediation of polluted areas, e.g., mining sludge. In this work, we demonstrated, for the first time, the nature and scale of alterations in leaf architecture at the tissue and cellular levels occurring in Norway maple growing on mining sludge originating from a copper mine in Lubin (Poland). The substrate differs from other mine wastes, e.g., calamine or serpentine soils, due to an extremely high level of arsenic (As). Alterations in leaf anatomy predominantly included the following: (1) a significant increase in upper epidermis thickness; (2) a significant decrease in palisade parenchyma width; (3) more compact leaf tissue organization; (4) the occurrence of two to three cell layers in palisade parenchyma in contrast to one in the control; (5) a significantly smaller size of cells building palisade parenchyma. At the cellular level, the alterations included mainly the occurrence of local cell wall thickenings-predominantly in the upper and lower epidermis-and the symptoms of accelerated leaf senescence. Nevertheless, many chloroplasts showed almost intact chloroplast ultrastructure. Modifications in leaf anatomy could be a symptom of alterations in morphogenesis but may also be related to plant adaptation to water deficit stress. The occurrence of local cell wall thickenings can be considered as a symptom of a defence strategy involved in the enlargement of apoplast volume for toxic elements (TE) sequestration and the alleviation of oxidative stress. Importantly, the ultrastructure of leaf cells was not markedly disturbed. The results suggested that Norway maple may have good phytoremediation potential. However, the general shape of the plant, the significantly smaller size of leaves, and accelerated senescence indicated the high toxicity of the mining sludge used in this experiment. Hence, the phytoremediation of such a substrate, specifically including use of Norway maple, should be preceded by some amendments-which are highly recommended.

2.
Environ Pollut ; 248: 247-259, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30798026

RESUMEN

Trees are considered good candidates for phytoremediation of soils contaminated with trace elements (TE), e.g. mine tailings. Using two year-old Tilia cordata plants, we demonstrated the nature and the scale of root architecture, especially root apices, as an indicator of mining sludge toxicity and plant capability to cope with these stress conditions. The novelty of our research is the analysis of the root response to substrate with extremely high concentrations of numerous toxic TE, and the 3D illustration of the disorders in root apex architecture using a clarity technique for confocal microscopy. The analysis demonstrates (1) a marked reduction in the size of the root apex zones (2) the occurrence of vascular tissues abnormally close to the root apex (3) collapse of the internal tissues in many root apices. Simultaneously, at the cellular level we observed some signs of a defensive response - such as a common increase of cell wall (CW) thickness and the formation of local CW thickenings - that enlarge the CW capacity for TE sequestration. However, we also detected harmful effects. Among others, a massive deposition of TE in the middle lamella which caused major damage - probably one of the reasons why the inner tissues of the root apex often collapsed - and the formation of incomplete CWs resulting in the occurrence of extremely large cells. Moreover, many cells of the root apex exhibited degenerated protoplasts. All these alterations indicate the harsh conditions for lime growth and survival and simultaneously, the manifestation of a defensive response. The obtained results allowed us to conclude that analysis of the nature and scale of structural alterations in roots can be useful indicators of plant ability to cope with stress conditions, e.g. in prospect of using the examined plants for reclamation of soils contaminated with TE.


Asunto(s)
Biodegradación Ambiental , Pared Celular/efectos de los fármacos , Minería , Contaminantes del Suelo/toxicidad , Tilia/fisiología , Compuestos de Calcio , Óxidos , Raíces de Plantas/química , Plantas , Aguas del Alcantarillado/análisis , Suelo/química , Contaminantes del Suelo/análisis , Contaminantes del Suelo/metabolismo , Oligoelementos/análisis , Árboles
3.
Environ Pollut ; 214: 354-361, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27107260

RESUMEN

Lead, one of the most abundant and hazardous trace metals affecting living organisms, has been commonly detected in plant cell walls including some tolerant plants, mining ecotypes and hyperaccumulators. We have previously shown that in tip growing Funaria sp. protonemata cell wall is remodeled in response to lead by formation of thickenings rich in low-methylesterified pectins (pectin epitope JIM5 - JIM5-P) able to bind metal ions, which accumulate large amounts of Pb. Hence, it leads to the increase of cell wall capacity for Pb compartmentalization. Here we show that diverse plant species belonging to different phyla (Arabidopsis, hybrid aspen, star duckweed), form similar cell wall thickenings in response to Pb. These thickenings are formed in tip growing cells such as the root hairs, and in diffuse growing cells such as meristematic and root cap columella cells of root apices in hybrid aspen and Arabidopsis and in mesophyll cells in star duckweed fronds. Notably, all analyzed cell wall thickenings were abundant in JIM5-P and accumulated high amounts of Pb. In addition, the co-localization of JIM5-P and Pb commonly occurred in these cells. Hence, cell wall thickenings formed the extra compartment for Pb accumulation. In this way plant cells increased cell wall capacity for compartmentalization of this toxic metal, protecting protoplast from its toxicity. As cell wall thickenings occurred in diverse plant species and cell types differing in the type of growth we may conclude that pectinous cell wall thickenings formation is a widespread defense strategy of plants to cope with Pb. Moreover, detection of natural defense strategy, increasing plant cell walls capacity for metal accumulation, reveals a promising direction for enhancing plant efficiency in phytoremediation.


Asunto(s)
Biodegradación Ambiental , Bryopsida/citología , Bryopsida/metabolismo , Pared Celular/metabolismo , Plomo/metabolismo , Pectinas/metabolismo , Arabidopsis/metabolismo , Araceae/metabolismo , Meristema/metabolismo , Raíces de Plantas/metabolismo , Populus/metabolismo
4.
Environ Pollut ; 205: 315-26, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26123720

RESUMEN

Low-methylesterified homogalacturonans have been suggested to play a role in the binding and immobilization of Pb in CW. Using root apices of hybrid aspen, a plant with a high phytoremediation potential, as a model, we demonstrated that the in situ distribution pattern of low-methylesterified homogalacturonan, pectin epitope (JIM5-P), reflects the pattern of Pb occurrence. The region which indicated high JIM5-P level corresponded with "Pb accumulation zone". Moreover, JIM5-P was especially abundant in cell junctions, CWs lining the intercellular spaces and the corners of intercellular spaces indicating the highest accumulation of Pb. Furthermore, JIM5-P and Pb commonly co-localized. The observations indicate that low-methylesterified homogalacturonan is the CW polymer that determines the capacity of CW for Pb sequestration. Our results suggest a promising directions for CW modification for enhancing the efficiency of plant roots in Pb accumulation, an important aspect in the phytoremediation of soils contaminated with trace metals.


Asunto(s)
Plomo/metabolismo , Pectinas/metabolismo , Populus/metabolismo , Contaminantes del Suelo/metabolismo , Anticuerpos Monoclonales/metabolismo , Biodegradación Ambiental , Biomarcadores/sangre , Esterificación , Raíces de Plantas/metabolismo
5.
PLoS One ; 10(2): e0116757, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25646776

RESUMEN

Lead ions are particularly dangerous to the photosynthetic apparatus, but little is known about the effects of trace metals, including Pb, on regulation of chloroplast redistribution. In this study a new effect of lead on chloroplast distribution patterns and movements was demonstrated in mesophyll cells of a small-sized aquatic angiosperm Lemna trisulca L. (star duckweed). An analysis of confocal microscopy images of L. trisulca fronds treated with lead (15 µM Pb2+, 24 h) in darkness or in weak white light revealed an enhanced accumulation of chloroplasts in the profile position along the anticlinal cell walls, in comparison to untreated plants. The rearrangement of chloroplasts in their response to lead ions in darkness was similar to the avoidance response of chloroplasts in plants treated with strong white light. Transmission electron microscopy X-ray microanalysis showed that intracellular chloroplast arrangement was independent of the location of Pb deposits, suggesting that lead causes redistribution of chloroplasts, which looks like a light-induced avoidance response, but is not a real avoidance response to the metal. Furthermore, a similar redistribution of chloroplasts in L. trisulca cells in darkness was observed also under the influence of exogenously applied hydrogen peroxide (H2O2). In addition, we detected an enhanced accumulation of endogenous H2O2 after treatment of plants with lead. Interestingly, H2O2-specific scavenger catalase partly abolished the Pb-induced chloroplast response. These results suggest that H2O2 can be involved in the avoidance-like movement of chloroplasts induced by lead. Analysis of photometric measurements revealed also strong inhibition (but not complete) of blue-light-induced chloroplast movements by lead. This inhibition may result from disturbances in the actin cytoskeleton, as we observed fragmentation and disappearance of actin filaments around chloroplasts. Results of this study show that the mechanisms of the toxic effect of lead on chloroplasts can include disturbances in their movement and distribution pattern.


Asunto(s)
Araceae/citología , Cloroplastos/efectos de los fármacos , Cloroplastos/metabolismo , Plomo/farmacología , Movimiento/efectos de los fármacos , Hojas de la Planta/citología , Citoesqueleto de Actina/efectos de los fármacos , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/efectos de la radiación , Araceae/efectos de los fármacos , Araceae/efectos de la radiación , Catalasa/metabolismo , Cloroplastos/efectos de la radiación , Oscuridad , Peróxido de Hidrógeno/farmacología , Movimiento/efectos de la radiación , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/efectos de la radiación
6.
Protoplasma ; 249(2): 347-51, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21590317

RESUMEN

Plants have developed a range of strategies for resisting environmental stresses. One of the most common is the synthesis and deposition of callose, which functions as a barrier against stress factor penetration. The aim of our study was to examine whether callose forms an efficient barrier against Pb penetration in the roots of Lemna minor L. exposed to this metal. The obtained results showed that Pb induced callose synthesis in L. minor roots, but it was not deposited regularly in all tissues and cells. Callose occurred mainly in the protoderm and in the centre of the root tip (procambial central cylinder). Moreover, continuous callose bands, which could form an efficient barrier for Pb penetration, were formed only in the newly formed and anticlinal cell walls (CWs); while in other CWs, callose formed only small clusters or incomplete bands. Such an arrangement of callose within root CWs inefficiently protected the protoplast from Pb penetration. As a result, Pb was commonly present inside the root cells. In the light of the results, the barrier role of callose against metal ion penetration appears to be less obvious than previously believed. It was indicated that induction of callose synthesis is not enough for a successful blockade of the stress factor penetration. Furthermore, it would appear that the pattern of callose distribution has an important role in this defence strategy.


Asunto(s)
Araceae/metabolismo , Pared Celular/metabolismo , Glucanos/metabolismo , Raíces de Plantas/metabolismo , Araceae/ultraestructura , Pared Celular/ultraestructura , Microscopía Electrónica de Transmisión , Raíces de Plantas/ultraestructura
7.
Environ Pollut ; 158(1): 325-38, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19647914

RESUMEN

The hypothesis that lead (Pb) can be uptake or remobilized from the cell wall (CW) by internalization withlow-esterified pectins (up to 40%--JIM5-P), was studied in tip-growing apical cell of Funaria hygrometrica protonemata. Treatment 4h with 1mM PbCl(2) caused marked vesicular traffic intensification and the common internalization of JIM5-P from the CW. Lead bound to JIM5-P was internalized from the CW, together with this compound and entered the protoplast. It showed that Pb deposited in CW is not as safe for plant cell as previously believed. However, pulse-chase experiments (recovering 4 h and 24 h) indicated that CW and its thickenings can function as the final sequestration compartments. In Pb deposition sites, a callose layer occurred. It was localized from the protoplast site, next to Pb deposits separating sequestrated to CW and its thickenings Pb from plasma membrane almost certainly protecting the plant cell from its returning into the protoplast.


Asunto(s)
Bryopsida/metabolismo , Pared Celular/metabolismo , Plomo/metabolismo , Pectinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA