Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Glob Chang Biol ; 20(10): 3004-25, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24802817

RESUMEN

Antarctic and Southern Ocean (ASO) marine ecosystems have been changing for at least the last 30 years, including in response to increasing ocean temperatures and changes in the extent and seasonality of sea ice; the magnitude and direction of these changes differ between regions around Antarctica that could see populations of the same species changing differently in different regions. This article reviews current and expected changes in ASO physical habitats in response to climate change. It then reviews how these changes may impact the autecology of marine biota of this polar region: microbes, zooplankton, salps, Antarctic krill, fish, cephalopods, marine mammals, seabirds, and benthos. The general prognosis for ASO marine habitats is for an overall warming and freshening, strengthening of westerly winds, with a potential pole-ward movement of those winds and the frontal systems, and an increase in ocean eddy activity. Many habitat parameters will have regionally specific changes, particularly relating to sea ice characteristics and seasonal dynamics. Lower trophic levels are expected to move south as the ocean conditions in which they are currently found move pole-ward. For Antarctic krill and finfish, the latitudinal breadth of their range will depend on their tolerance of warming oceans and changes to productivity. Ocean acidification is a concern not only for calcifying organisms but also for crustaceans such as Antarctic krill; it is also likely to be the most important change in benthic habitats over the coming century. For marine mammals and birds, the expected changes primarily relate to their flexibility in moving to alternative locations for food and the energetic cost of longer or more complex foraging trips for those that are bound to breeding colonies. Few species are sufficiently well studied to make comprehensive species-specific vulnerability assessments possible. Priorities for future work are discussed.


Asunto(s)
Organismos Acuáticos , Cambio Climático , Cubierta de Hielo , Regiones Antárticas , Biota , Ecosistema , Océanos y Mares , Movimientos del Agua , Viento
2.
Nature ; 451(7181): 959-63, 2008 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-18288187

RESUMEN

Many parasitic Apicomplexa, such as Plasmodium falciparum, contain an unpigmented chloroplast remnant termed the apicoplast, which is a target for malaria treatment. However, no close relative of apicomplexans with a functional photosynthetic plastid has yet been described. Here we describe a newly cultured organism that has ultrastructural features typical for alveolates, is phylogenetically related to apicomplexans, and contains a photosynthetic plastid. The plastid is surrounded by four membranes, is pigmented by chlorophyll a, and uses the codon UGA to encode tryptophan in the psbA gene. This genetic feature has been found only in coccidian apicoplasts and various mitochondria. The UGA-Trp codon and phylogenies of plastid and nuclear ribosomal RNA genes indicate that the organism is the closest known photosynthetic relative to apicomplexan parasites and that its plastid shares an origin with the apicoplasts. The discovery of this organism provides a powerful model with which to study the evolution of parasitism in Apicomplexa.


Asunto(s)
Células Eucariotas/clasificación , Células Eucariotas/metabolismo , Parásitos/clasificación , Parásitos/citología , Fotosíntesis , Filogenia , Plastidios/metabolismo , Animales , Núcleo Celular/genética , Clorofila/metabolismo , Clorofila A , Codón/genética , Células Eucariotas/citología , Células Eucariotas/ultraestructura , Parásitos/genética , Parásitos/ultraestructura , Plasmodium falciparum/clasificación , Plastidios/genética , ARN Ribosómico/genética
3.
J Phycol ; 47(3): 615-626, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27021991

RESUMEN

The widespread coccolithophorid Emiliania huxleyi (Lohmann) W. W. Hay et H. Mohler plays a pivotal role in the carbon pump and is known to exhibit significant morphological, genetic, and physiological diversity. In this study, we compared photosynthetic pigments and morphology of triplicate strains of Southern Ocean types A and B/C. The two morphotypes differed in width of coccolith distal shield elements (0.11-0.24 µm, type A; 0.06-0.12 µm, type B/C) and morphology of distal shield central area (grill of curved rods in type A; thin plain plate in type B/C) and showed differences in carotenoid composition. The mean 19'-hexanoyloxyfucoxanthin (Hex):chl a ratio in type B/C was >1, whereas the type A ratio was <1. The Hex:fucoxanthin (fuc) ratio for type B/C was 11 times greater than that for type A, and the proportion of fuc in type A was 6 times higher than that in type B/C. The fuc derivative 4-keto-19'-hexanoyloxyfucoxanthin (4-keto-hex) was present in type A but undetected in B/C. DNA sequencing of tufA distinguished morphotypes A, B/C (indistinguishable from B), and R, while little variation was observed within morphotypes. Thirty single nucleotide polymorphisms were identified in the 710 bp tufA sequence, of which 10 alleles were unique to B/C and B morphotypes, seven alleles were unique to type A, and six alleles were unique to type R. We propose that the morphologically, physiologically, and genetically distinct Southern Ocean type B/C sensu Young et al. (2003) be classified as E. huxleyi var. aurorae var. nov. S. S. Cook et Hallegr.

4.
PLoS One ; 8(8): e72165, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23977242

RESUMEN

Climate-driven changes are expected to alter the hydrography of the Sub-Antarctic Zone (SAZ) and Polar Frontal Zone (PFZ) south of Australia, in which distinct regional environments are believed to be responsible for the differences in phytoplankton biomass in these regions. Here, we report how the dynamic influences of light, iron and temperature, which are responsible for the photophysiological differences between phytoplankton in the SAZ and PFZ, contribute to the biomass differences in these regions. High effective photochemical efficiency of photosystem II (F'(q)/F'(m)0.4), maximum photosynthesis rate (P(B)(max)), light-saturation intensity (E(k)), maximum rate of photosynthetic electron transport (1/[Symbol: see text]PSII), and low photoprotective pigment concentrations observed in the SAZ correspond to high chlorophyll a and iron concentrations. In contrast, phytoplankton in the PFZ exhibits low F'(q)/F'(M) (~ 0.2) and high concentrations of photoprotective pigments under low light environment. Strong negative relationships between iron, temperature, and photoprotective pigments demonstrate that cells were producing more photoprotective pigments under low temperature and iron conditions, and are responsible for the low biomass and low productivity measured in the PFZ. As warming and enhanced iron input is expected in this region, this could probably increase phytoplankton photosynthesis in this region. However, complex interactions between the biogeochemical processes (e.g. stratification caused by warming could prevent mixing of nutrients), which control phytoplankton biomass and productivity, remain uncertain.


Asunto(s)
Clorofila/metabolismo , Hierro/metabolismo , Modelos Estadísticos , Fotosíntesis/fisiología , Fitoplancton/fisiología , Regiones Antárticas , Biomasa , Clorofila A , Clima , Ecosistema , Transporte de Electrón/fisiología , Luz , Fotosíntesis/efectos de la radiación , Complejo de Proteína del Fotosistema II/metabolismo , Fitoplancton/efectos de la radiación , Temperatura
5.
J Phycol ; 47(1): 77-86, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27021712

RESUMEN

All photosynthetic organisms endeavor to balance energy supply with demand. For sea-ice diatoms, as with all marine photoautotrophs, light is the most important factor for determining growth and carbon-fixation rates. Light varies from extremely low to often relatively high irradiances within the sea-ice environment, meaning that sea-ice algae require moderate physiological plasticity that is necessary for rapid light acclimation and photoprotection. This study investigated photoprotective mechanisms employed by bottom Antarctic sea-ice algae in response to relatively high irradiances to understand how they acclimate to the environmental conditions presented during early spring, as the light climate begins to intensify and snow and sea-ice thinning commences. The sea-ice microalgae displayed high photosynthetic plasticity to increased irradiance, with a rapid decline in photochemical efficiency that was completely reversible when placed under low light. Similarly, the photoprotective xanthophyll pigment diatoxanthin (Dt) was immediately activated but reversed during recovery under low light. The xanthophyll inhibitor dithiothreitol (DTT) and state transition inhibitor sodium fluoride (NaF) were used in under-ice in situ incubations and revealed that nonphotochemical quenching (NPQ) via xanthophyll-cycle activation was the preferred method for light acclimation and photoprotection by bottom sea-ice algae. This study showed that bottom sea-ice algae from the east Antarctic possess a high level of plasticity in their light-acclimation capabilities and identified the xanthophyll cycle as a critical mechanism in photoprotection and the preferred means by which sea-ice diatoms regulate energy flow to PSII.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA