Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Appl Clin Med Phys ; : e14512, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39312465

RESUMEN

PURPOSE: To provide a methodology for characterization of the technical properties of a newly developed non-metallic tissue expander for intensity modulated proton therapy. METHODS: Three tissue expanders (AlloX2-Pro: plastic-dual port, AlloX2: metal-dual port, and Dermaspan: metal-single port) were deconstructed, CT-scanned, and modeled in RayStation12A. A 165 MeV single spot was used to create RayStation dose planes, and the integrated depth dose profiles were calculated and the DR90 extracted to predict water equivalent thickness (WET). These predictions were compared to measurements taken with an IBA Giraffe MLIC. Native, water, and fully modelled overrides were compared for the AlloX2 Pro to quantify differences in override choices. Geometric considerations between expanders were compared using a ray-tracing technique to contour the "no-fly" zone around metallic components using a clinical, three beam arrangement. Lastly, a planning and evaluation framework was provided using a single plan as an illustration. RESULTS: The measured AlloX2-Pro WET values were within 0.22 cm of RayStation predictions while metallic values ranged from 0.08 to 0.46 cm. Using natively scanned density values for the AlloX2 Pro improved the discrepancy in WET between predicted and measured from -0.22 to -0.09 cm (drain) and from -0.17 to -0.12 cm (injection). The "no-fly" zone volume of all three beams reduced 95% between the AlloX2-Pro and Dermaspan, which geometrically allowed more uniform coverage behind the port and reduced need for beam modulation. CONCLUSION: The beam perturbation of the AlloX2-Pro is well modeled, but improved agreement with measured WET values was observed when utilizing native densities in calculations. The AlloX2 Pro can support beam arrangements that traverse the ports, which can enable simpler beam geometry and a reduction in dose modulation around the port to promote improved robustness and treatment delivery quality.

2.
Bioorg Med Chem Lett ; 28(16): 2688-2692, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29650288

RESUMEN

New treatment modalities for glioblastoma multiforme (GBM) are urgently needed. Proton therapy is considered one of the most effective forms of radiation therapy for GBM. DNA alkylating agents such as temozolomide (TMZ) are known to increase the radiosensitivity of GBM to photon radiation. TMZ is a fairly impotent agent, while duocarmycin SA (DSA) is an extremely potent cytotoxic agent capable of inducing a sequence-selective alkylation of duplex DNA. Here, the effects of sub-nM concentrations of DSA on the radiosensitivity of a human GBM cell line (U-138) to proton irradiation were examined. Radiation sensitivity was determined by viability, apoptosis, necrosis and clonogenic assays. DSA concentrations as low as 0.001 nM significantly sensitized U-138 cells to proton irradiation. DSA demonstrates synergistic cytotoxicity against GBM cells treated with proton radiation in vitro, which may represent a novel therapeutic alternative for the treatment of GBM.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Indoles/farmacología , Fármacos Sensibilizantes a Radiaciones/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Duocarmicinas , Glioblastoma , Humanos , Necrosis/inducido químicamente , Protones , Pirroles/farmacología
3.
J Appl Clin Med Phys ; 18(5): 315-324, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28719019

RESUMEN

As technology continues to develop, external beam radiation therapy is being employed, with increased conformity, to treat smaller targets. As this occurs, the dosimetry methods and tools employed to quantify these fields for treatment also have to evolve to provide increased spatial resolution. The team at the University of Wollongong has developed a pixelated silicon detector prototype known as the dose magnifying glass (DMG) for real-time small-field metrology. This device has been tested in photon fields and IMRT. The purpose of this work was to conduct the initial performance tests with proton radiation, using beam energies and modulations typically associated with proton radiosurgery. Depth dose and lateral beam profiles were measured and compared with those collected using a PTW parallel-plate ionization chamber, a PTW proton-specific dosimetry diode, EBT3 Gafchromic film, and Monte Carlo simulations. Measurements of the depth dose profile yielded good agreement when compared with Monte Carlo, diode and ionization chamber. Bragg peak location was measured accurately by the DMG by scanning along the depth dose profile, and the relative response of the DMG at the center of modulation was within 2.5% of that for the PTW dosimetry diode for all energy and modulation combinations tested. Real-time beam profile measurements of a 5 mm 127 MeV proton beam also yielded FWHM and FW90 within ±1 channel (0.1 mm) of the Monte Carlo and EBT3 film data across all depths tested. The DMG tested here proved to be a useful device at measuring depth dose profiles in proton therapy with a stable response across the entire proton spread-out Bragg peak. In addition, the linear array of small sensitive volumes allowed for accurate point and high spatial resolution one-dimensional profile measurements of small radiation fields in real time to be completed with minimal impact from partial volume averaging.


Asunto(s)
Terapia de Protones/instrumentación , Radiocirugia/instrumentación , Diseño de Equipo , Método de Montecarlo , Radiometría/instrumentación , Radiocirugia/métodos , Silicio
4.
J Appl Clin Med Phys ; 16(6): 51-64, 2015 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-26699554

RESUMEN

The small fields and sharp gradients typically encountered in proton radiosurgery require high spatial resolution dosimetric measurements, especially below 1-2 cm diameters. Radiochromic film provides high resolution, but requires postprocessing and special handling. Promising alternatives are diode detectors with small sensitive volumes (SV) that are capable of high resolution and real-time dose acquisition. In this study we evaluated the PTW PR60020 proton dosimetry diode using radiation fields and beam energies relevant to radiosurgery applications. Energies of 127 and 157 MeV (9.7 to 15 cm range) and initial diameters of 8, 10, 12, and 20mm were delivered using single-stage scattering and four modulations (0, 15, 30, and 60mm) to a water tank in our treatment room. Depth dose and beam profile data were compared with PTW Markus N23343 ionization chamber, EBT2 Gafchromic film, and Monte Carlo simulations. Transverse dose profiles were measured using the diode in "edge-on" orientation or EBT2 film. Diode response was linear with respect to dose, uniform with dose rate, and showed an orientation-dependent (i.e., beam parallel to, or perpendicular to, detector axis) response of less than 1%. Diodevs. Markus depth-dose profiles, as well as Markus relative dose ratio vs. simulated dose-weighted average lineal energy plots, suggest that any LET-dependent diode response is negligible from particle entrance up to the very distal portion of the SOBP for the energies tested. Finally, while not possible with the ionization chamber due to partial volume effects, accurate diode depth-dose measurements of 8, 10, and 12 mm diameter beams were obtained compared to Monte Carlo simulations. Because of the small SV that allows measurements without partial volume effects and the capability of submillimeter resolution (in edge-on orientation) that is crucial for small fields and high-dose gradients (e.g., penumbra, distal edge), as well as negligible LET dependence over nearly the full the SOBP, the PTW proton diode proved to be a useful high-resolution, real-time metrology device for small proton field radiation measurements such as would be encountered in radiosurgery applications.


Asunto(s)
Terapia de Protones/métodos , Radiometría/instrumentación , Radiocirugia/métodos , Simulación por Computador , Humanos , Transferencia Lineal de Energía , Modelos Lineales , Método de Montecarlo , Terapia de Protones/instrumentación , Radiocirugia/instrumentación , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Planificación de la Radioterapia Asistida por Computador/estadística & datos numéricos , Agua , Película para Rayos X
5.
Med Phys ; 51(9): 5901-5910, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38977285

RESUMEN

BACKGROUND: The dynamic collimation system (DCS) provides energy layer-specific collimation for pencil beam scanning (PBS) proton therapy using two pairs of orthogonal nickel trimmer blades. While excellent measurement-to-calculation agreement has been demonstrated for simple cube-shaped DCS-trimmed dose distributions, no comparison of measurement and dose calculation has been made for patient-specific treatment plans. PURPOSE: To validate a patient-specific quality assurance (PSQA) process for DCS-trimmed PBS treatment plans and evaluate the agreement between measured and calculated dose distributions. METHODS: Three intracranial patient cases were considered. Standard uncollimated PBS and DCS-collimated treatment plans were generated for each patient using the Astroid treatment planning system (TPS). Plans were recalculated in a water phantom and delivered at the Miami Cancer Institute (MCI) using an Ion Beam Applications (IBA) dedicated nozzle system and prototype DCS. Planar dose measurements were acquired at two depths within low-gradient regions of the target volume using an IBA MatriXX ion chamber array. RESULTS: Measured and calculated dose distributions were compared using 2D gamma analysis with 3%/3 mm criteria and low dose threshold of 10% of the maximum dose. Median gamma pass rates across all plans and measurement depths were 99.0% (PBS) and 98.3% (DCS), with a minimum gamma pass rate of 88.5% (PBS) and 91.2% (DCS). CONCLUSIONS: The PSQA process has been validated and experimentally verified for DCS-collimated PBS. Dosimetric agreement between the measured and calculated doses was demonstrated to be similar for DCS-collimated PBS to that achievable with noncollimated PBS.


Asunto(s)
Terapia de Protones , Garantía de la Calidad de Atención de Salud , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Terapia de Protones/instrumentación , Terapia de Protones/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Humanos , Neoplasias Encefálicas/radioterapia , Medicina de Precisión , Fantasmas de Imagen
6.
Sci Rep ; 14(1): 26685, 2024 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-39496803

RESUMEN

Recurrent high-grade intracranial malignancies have a grim prognosis and uniform management guidelines are lacking. Re-irradiation is underused due to concerns about irreversible side effects. Pulsed-reduced dose rate radiotherapy (PRDR) aims to reduce toxicity while improving tumor control by exploiting dose-rate effects. We share our initial experience with temporally modulated pulsed proton re-irradiation (TMPPR), focusing on workflow, safety, feasibility, and outcomes for the first patient cohort. TMPPR was administered to patients with recurrent or progressive central nervous system malignancies using intensity modulated proton therapy with three fields. Patient and treatment data were collected, responses categorized using RANO assessment, and toxicities graded using CTCAE v5.0. Five patients received TMPPR between October 2022 and May 2023, with a median age of 54 years (Range: 32-72), and a median time from initial radiotherapy to re-RT of 23 months (Range 14-40). Treatment was completed without delay, with a median dose of 60 GyRBE in 30 fractions. Initial treatment response assessment showed complete (n = 1) or partial (n = 3) responses. Limited toxicity was observed, primarily grade 2 alopecia and one case of radiation necrosis graded at 2. This early experience demonstrates the feasibility of TMPPR delivery, highlighting the importance of prospective evaluations in the re-irradiation setting.


Asunto(s)
Neoplasias Encefálicas , Estudios de Factibilidad , Recurrencia Local de Neoplasia , Terapia de Protones , Reirradiación , Humanos , Persona de Mediana Edad , Terapia de Protones/métodos , Terapia de Protones/efectos adversos , Masculino , Anciano , Femenino , Reirradiación/métodos , Neoplasias Encefálicas/radioterapia , Adulto , Recurrencia Local de Neoplasia/radioterapia , Radioterapia de Intensidad Modulada/métodos , Radioterapia de Intensidad Modulada/efectos adversos , Resultado del Tratamiento , Estudios de Cohortes
7.
Neurol India ; 71(12 Suppl 2): S174-S182, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37026350

RESUMEN

Introduction: Stereotactic radiosurgery (SRS) is highly conformal, high-dose radiation therapy delivered in 1-5 fractions, and is considered the standard of care for several central nervous system (CNS) indications. Particle therapies, such as protons, have physical and dosimetric advantageous properties compared to photons. However, proton SRS (PSRS) is not widely performed given the few particle therapy facilities, high-cost, and limited outcomes research as a sole modality and in comparative studies. The data available differs from each pathology. For AVMs, especially those with deep or eloquent locations, PSRS obliteration rates outcomes appear favorable and superior. For meningiomas, PSRS has been used for grade 1 alone, and for higher grades a PSRS boost has been considered. For vestibular schwannoma, PSRS seems to have favorable control rates with modest toxicity outcomes. For pituitary tumors, data shows excellent results with PSRS for functional and non-functioning adenomas. For brain metastasis, moderate doses of PSRS achieves high local control rates with low rates of radiation necrosis. For uveal melanoma, dedicated eyeline PSRS (4-5 fractions) are associated with very high tumor control and eye retention rates. Conclusions: PSRS is effective and safe for various intracranial pathologies. Limited data, usually retrospective and single institution series exist. There are numerous advantages of protons over photons, so it is important to understand limitations with further studies. Published clinical outcomes and widespread adoption of proton therapy will be key to unlocking the potential benefits of PSRS.


Asunto(s)
Neoplasias Meníngeas , Radiocirugia , Humanos , Protones , Radiocirugia/métodos , Estudios Retrospectivos , Sistema Nervioso Central/patología , Neoplasias Meníngeas/radioterapia , Neoplasias Meníngeas/cirugía , Neoplasias Meníngeas/patología , Resultado del Tratamiento
8.
Med Dosim ; 2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-38001010

RESUMEN

Advances in radiotherapy (RT) technologies permit significant decreases in the dose delivered to organs at risk (OARs) for patients with esophageal cancer (EC). Novel RT modalities such as proton beam therapy (PBT) and magnetic resonance-guided radiotherapy (MRgRT), as well as motion management techniques including breath hold (BH) are expected to further improve the therapeutic ratio. However, to our knowledge, the dosimetric benefits of PBT vs MRgRT vs volumetric-modulated arc therapy (VMAT) have not been directly compared for EC. We performed a retrospective in silico evaluation using the images and datasets of nine distal EC patients who were treated at our institution with a 0.35-Tesla MR linac to 50.4 Gy in 28 fractions in mid-inspiration BH (BH-MRgRT). Comparison free-breathing (FB) intensity-modulated PBT (FB-IMPT) and FB-VMAT plans were retrospectively created using the same prescription dose, target volume coverage goals, and OAR constraints. A 5 mm setup margin was used for all plans. BH-IMPT and BH-VMAT plans were not evaluated as they would not reflect our institutional practice. Planners were blinded to the results of the treatment plans created using different radiation modalities. The primary objective was to compare plan quality, target volume coverage, and OAR doses. All treatment plans met pre-defined target volume coverage and OAR constraints. The median conformity and homogeneity indices between FB-IMPT, BH-MRgRT and FB-VMAT were 1.13, 1.25, and 1.43 (PITV) and 1.04, 1.15, 1.04 (HI), respectively. For FB-IMPT, BH-MRgRT and FB-VMAT the median heart dose metrics were 52.8, 79.3, 146.8 (V30Gy, cc), 35.5, 43.8, 77.5 (V40Gy, cc), 16.9, 16.9, 32.5 (V50Gy, cc) and 6.5, 14.9, 17.3 (mean, Gy), respectively. Lung dose metrics were 8.6, 7.9, 18.5 (V20Gy, %), and 4.3, 6.3, 11.2 (mean, Gy), respectively. The mean liver dose (Gy) was 6.5, 19.6, 22.2 respectively. Both FB-IMPT and BH-MRgRT achieve substantial reductions in heart, lung, and liver dose compared to FB-VMAT. We plan to evaluate dosimetric outcomes across these RT modalities assuming consistent use of BH.

9.
Phys Med Biol ; 67(11)2022 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-35421853

RESUMEN

Objective. To investigate the potential of using a single quadrupole magnet with a high magnetic field gradient to create planar minibeams suitable for clinical applications of proton minibeam radiation therapy.Approach. We performed Monte Carlo simulations involving single quadrupole Halbach cylinders in a passively scattered nozzle in clinical use for proton therapy. Pencil beams produced by the nozzle of 10-15 mm initial diameters and particle range of âˆ¼10-20 cm in water were focused by magnets with field gradients of 225-350 T m-1and cylinder lengths of 80-110 mm to produce very narrow elongated (planar) beamlets. The corresponding dose distributions were scored in a water phantom. Composite minibeam dose distributions composed from three beamlets were created by laterally shifting copies of the single beamlet distribution to either side of a central beamlet. Modulated beamlets (with 18-30 mm nominal central SOBP) and corresponding composite dose distributions were created in a similar manner. Collimated minibeams were also compared with beams focused using one magnet/particle range combination.Main results. The focusing magnets produced planar beamlets with minimum lateral FWHM of ∼1.1-1.6 mm. Dose distributions composed from three unmodulated beamlets showed a high degree of proximal spatial fractionation and a homogeneous target dose. Maximal peak-to-valley dose ratios (PVDR) for the unmodulated beams ranged from 32 to 324, and composite modulated beam showed maximal PVDR ranging from 32 to 102 and SOBPs with good target dose coverage.Significance.Advantages of the high-gradient magnets include the ability to focus beams with phase space parameters that reflect beams in operation today, and post-waist particle divergence allowing larger beamlet separations and thus larger PVDR. Our results suggest that high gradient quadrupole magnets could be useful to focus beams of moderate emittance in clinical proton therapy.


Asunto(s)
Terapia de Protones , Método de Montecarlo , Fantasmas de Imagen , Terapia de Protones/métodos , Protones , Dosificación Radioterapéutica , Agua
10.
Med Phys ; 37(1): 311-21, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20175494

RESUMEN

PURPOSE: In proton therapy, as in other forms of radiation therapy, scattered and secondary particles produce undesired dose outside the target volume that may increase the risk of radiation-induced secondary cancer and interact with electronic devices in the treatment room. The authors implement a Monte Carlo model of this dose deposited outside passively scattered fields and compare it to measurements, determine the out-of-field equivalent dose, and estimate the change in the dose if the same target volumes were treated with an active beam scanning technique. METHODS: Measurements are done with a thimble ionization chamber and the Wellhofer MatriXX detector inside a Lucite phantom with field configurations based on the treatment of prostate cancer and medulloblastoma. The authors use a GEANT4 Monte Carlo simulation, demonstrated to agree well with measurements inside the primary field, to simulate fields delivered in the measurements. The partial contributions to the dose are separated in the simulation by particle type and origin. RESULTS: The agreement between experiment and simulation in the out-of-field absorbed dose is within 30% at 10-20 cm from the field edge and 90% of the data agrees within 2 standard deviations. In passive scattering, the neutron contribution to the total dose dominates in the region downstream of the Bragg peak (65%-80% due to internally produced neutrons) and inside the phantom at distances more than 10-15 cm from the field edge. The equivalent doses using 10 for the neutron weighting factor at the entrance to the phantom and at 20 cm from the field edge are 2.2 and 2.6 mSv/Gy for the prostate cancer and cranial medulloblastoma fields, respectively. The equivalent dose at 15-20 cm from the field edge decreases with depth in passive scattering and increases with depth in active scanning. Therefore, active scanning has smaller out-of-field equivalent dose by factors of 30-45 in the entrance region and this factor decreases with depth. CONCLUSIONS: The dose deposited immediately downstream of the primary field, in these cases, is dominated by internally produced neutrons; therefore, scattered and scanned fields may have similar risk of second cancer in this region. The authors confirm that there is a reduction in the out-of-field dose in active scanning but the effect decreases with depth. GEANT4 is suitable for simulating the dose deposited outside the primary field. The agreement with measurements is comparable to or better than the agreement reported for other implementations of Monte Carlo models. Depending on the position, the absorbed dose outside the primary field is dominated by contributions from primary protons that may or may not have scattered in the brass collimating devices. This is noteworthy as the quality factor of the low LET protons is well known and the relative dose risk in this region can thus be assessed accurately.


Asunto(s)
Modelos Biológicos , Terapia de Protones , Radiometría/métodos , Simulación por Computador , Humanos , Dosificación Radioterapéutica , Efectividad Biológica Relativa
11.
Life Sci Space Res (Amst) ; 26: 140-148, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32718680

RESUMEN

Visual illusions from astronauts in space have been reported to be associated with the passage of high energy charged particles through visual structures (retina, optic nerve, brain). Similar effects have also been reported by patients under proton and heavy ion therapies. This prompted us to investigate whether protons at the Loma Linda University Proton Therapy and Research Center (PTRC) may also affect other sensory systems beside evoking similar perceptions on the visual system. A retrospective review of proton radiotherapy patient records at PTRC identified 29 sensory reports from 19 patients who spontaneously reported visual, olfactory, auditory and gustatory illusions during treatment. Our results suggest that protons can evoke neuronal responses sufficient to elicit conscious sensory illusion experiences, in four senses (auditory, taste, smell, and visual) analogous to those from normal sensory inputs. The regions of the brain receiving the highest doses corresponded with the anatomical structures associated with each type of illusion. Our findings suggest that more detailed queries about sensory illusions during proton therapy are warranted, possibly integrated with quantitative effect descriptions (such as electroencephalography) and can provide additional physiological basis for understanding the effects of protons on central nervous system tissues, needed for radiation risk assessment in advance of deep space human exploration.


Asunto(s)
Encéfalo/fisiología , Ilusiones/fisiología , Terapia de Protones/efectos adversos , Adolescente , Adulto , Estudios de Cohortes , Femenino , Humanos , Ilusiones/psicología , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Adulto Joven
12.
Med Phys ; 36(12): 5412-9, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20095253

RESUMEN

PURPOSE: Previous Monte Carlo and experimental studies involving secondary neutrons in proton therapy have employed a number of phantom materials that are designed to represent human tissue. In this study, the authors determined the suitability of common phantom materials for dosimetry of secondary neutrons, specifically for pediatric and intracranial proton therapy treatments. METHODS: This was achieved through comparison of the absorbed dose and dose equivalent from neutrons generated within the phantom materials and various ICRP tissues. The phantom materials chosen for comparison were Lucite, liquid water, solid water, and A150 tissue equivalent plastic, These phantom materials were compared to brain, muscle, and adipose tissues. RESULTS: The magnitude of the doses observed were smaller than those reported in previous experimental and Monte Carlo studies, which incorporated neutrons generated in the treatment head. The results show that for both neutron absorbed dose and dose equivalent, no single phantom material gives agreement with tissue within 5% at all the points considered. Solid water gave the smallest mean variation with the tissues out of field where neutrons are the primary contributor to the total dose. CONCLUSIONS: Of the phantom materials considered, solid water shows best agreement with tissues out of field.


Asunto(s)
Neutrones , Fantasmas de Imagen , Terapia de Protones , Radiometría/instrumentación , Agencias Internacionales , Método de Montecarlo , Protección Radiológica , Dosificación Radioterapéutica
13.
Med Phys ; 36(10): 4486-94, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19928079

RESUMEN

A new monolithic silicon DeltaE-E telescope was evaluated in unmodulated and modulated 100 MeV proton beams used for hadron therapy. Compared to a classical microdosimetry detector, which provides one-dimensional information on lineal energy of charged particles, this detector system provides two-dimensional information on lineal energy and particle energy based on energy depositions, collected in coincidence, within the DeltaE and E stages of the detector. The authors investigated the possibility to use the information obtained with the DeltaE-E telescope to determine the relative biological effectiveness (RBE) at defined locations within the proton Bragg peak and spread-out Bragg peak (SOBP). An RBE matrix based on the established in vitro V79 cell survival data was developed to link the output of the device directly to RBE(alpha), the RBE in the low-dose limit, at various depths in a homogeneous polystyrene phantom. In the SOBP of a 100 MeV proton beam, the RBE(alpha) increased from 4.04 proximal to the SOBP to a maximum value of 5.4 at the distal edge. The DeltaE-E telescope, with its high spatial resolution, has potential applications to biologically weighted hadron treatment planning as it provides a compact and portable means for estimating the RBE in rapidly changing hadron radiation fields within phantoms.


Asunto(s)
Radiometría/instrumentación , Efectividad Biológica Relativa , Diseño Asistido por Computadora , Diseño de Equipo , Análisis de Falla de Equipo , Dosis de Radiación , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
14.
J Gastrointest Oncol ; 10(1): 112-117, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30788166

RESUMEN

BACKGROUND: A phase I trial to determine the maximum tolerated dose (MTD) of Proton stereotactic body radiation therapy (SBRT) for liver metastases in anticipation of a subsequent phase II study. METHODS: An institutional IRB approved phase I clinical trial was conducted. Eligible patients had 1-3 liver metastases measuring less than 5 cm, and no metastases location within 2 cm of the GI tract. Dose escalation was conducted with three dose cohorts. The low, intermediate, and high dose cohorts were planned to receive 36, 48, and 60 respectively to the internal target volume (ITV) in 3 fractions. At least 700 mL of normal liver had to receive <15. Dose-limiting toxicity (DLT) included acute grade 3 liver, intestinal or spinal cord toxicity or any grade 4 toxicity. The MTD is defined as the dose level below that which results in DLT in 2 or more of the 6 patients in the highest dose level cohort. RESULTS: Nine patients were enrolled (6 male, 3 female): median age 64 years (range, 33-77 years); median gross tumor volume (GTV) 11.1 mL (range, 2.14-89.3 mL); most common primary site, colorectal (5 patients). Four patients had multiple tumors. No patient experienced a DLT and dose was escalated to 60 in 3 fractions without reaching MTD. The only toxicity within 90 days of completion of treatment was one patient with a grade 1 skin hyperpigmentation without tenderness or desquamation. Two patients in the low dose cohort had local recurrence and repeat SBRT was done to previously treated lesions without any toxicities. CONCLUSIONS: Biologically ablative Proton SBRT doses are well tolerated in patients with limited liver metastases with no patients experiencing any grade 2+ acute toxicity. Results from this trial provide the grounds for an ongoing phase II Proton SBRT study of 60 over 3 fractions for liver metastases.

15.
Phys Med Biol ; 64(11): 115024, 2019 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-30844767

RESUMEN

We performed experiments using a triplet of quadrupole permanent magnets to focus protons and compared their dose distributions with unfocused collimated beams using energies and field sizes typically employed in proton radiosurgery. Experiments were performed in a clinical treatment room wherein small-diameter proton beams were focused by a magnet triplet placed immediately upstream of a water tank. The magnets consisted of segments of Sm2Co17 rare-earth permanent magnetic material adhered into Halbach cylinders with nominal field gradients of 100, 150, 200, and 250 T m-1. Unmodulated beams with initial diameters of 3 mm-20 mm were delivered using a single scattering system with nominal energies of 127 and 157 MeV (respective ranges of ~10 cm and 15 cm in water), commonly used for proton radiosurgery at our institution. For comparison, small-diameter unfocused collimated beams were similarly delivered. Transverse and depth dose distributions were measured using radiochromic film and a diode detector, respectively, and compared between the focused and unfocused beams (UNF). The focused beams produced low-eccentricity beam spots (defined by the 80% dose contour) at Bragg depth, with full width at 80% maximum dose values ranging from 3.8 to 7.6 mm. When initial focused beam diameters were larger than matching unfocused diameters (19 of 29 cases), the focused beams peak-to-entrance dose ratios were 13% to 73% larger than UNF. In addition, in 17 of these cases the efficiency of dose delivery to the target was 1.3× to 3.3× larger. Both peak-to-entrance dose ratios and efficiency tended to increase with initial beam diameter, while efficiency also tended to increase with magnet gradient. These experimental results are consistent with our previous Monte Carlo (MC) studies and suggest that a triplet of quadrupole Halbach cylinders could be clinically useful for irradiating small-field radiosurgical targets with fewer beams, lower entrance dose, and shorter treatment times.


Asunto(s)
Fenómenos Magnéticos , Protones , Radiocirugia/métodos , Método de Montecarlo , Agua
16.
Z Med Phys ; 18(4): 286-96, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-19205298

RESUMEN

Evaluation and monitoring of the cancer risk from space radiation exposure is a crucial requirement for the success of long-term space missions. One important task in the risk calculation is to properly weigh the various components of space radiation dose according to their assumed contribution to the cancer risk relative to the risk associated with radiation of low ionization density. Currently, quality factors of radiation both on the ground and in space are defined by national and international commissions based on existing radiobiological data and presumed knowledge of the ionization density distribution of the radiation field at a given point of interest. This approach makes the determination of the average quality factor ofa given radiation field a rather complex task. In this contribution, we investigate the possibility to define quality factors of space radiation exposure based on nanodosimetric data. The underlying formalism of the determination of quality factors on the basis of nanodosimetric data is described, and quality factors for protons and ions (helium and carbon) of different energies based on simulated nanodosimetric data are presented. The value and limitations of this approach are discussed.


Asunto(s)
Daño del ADN , Monitoreo de Radiación/normas , Protección Radiológica/normas , Radiometría/normas , Vuelo Espacial , Humanos , Transferencia Lineal de Energía/efectos de la radiación , Probabilidad , Dosis de Radiación , Radiometría/efectos adversos , Medición de Riesgo , Sensibilidad y Especificidad
17.
Phys Med Biol ; 63(5): 055010, 2018 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-29369047

RESUMEN

The purpose of this project is to investigate the advantages in dose distribution and delivery of proton beams focused by a triplet of quadrupole magnets in the context of potential radiosurgery treatments. Monte Carlo simulations were performed using various configurations of three quadrupole magnets located immediately upstream of a water phantom. Magnet parameters were selected to match what can be commercially manufactured as assemblies of rare-earth permanent magnetic materials. Focused unmodulated proton beams with a range of ~10 cm in water were target matched with passive collimated beams (the current beam delivery method for proton radiosurgery) and properties of transverse dose, depth dose and volumetric dose distributions were compared. Magnetically focused beams delivered beam spots of low eccentricity to Bragg peak depth with full widths at the 90% reference dose contour from ~2.5 to 5 mm. When focused initial beam diameters were larger than matching unfocused beams (10 of 11 cases) the focused beams showed 16%-83% larger peak-to-entrance dose ratios and 1.3 to 3.4-fold increases in dose delivery efficiency. Peak-to-entrance and efficiency benefits tended to increase with larger magnet gradients and larger initial diameter focused beams. Finally, it was observed that focusing tended to shift dose in the water phantom volume from the 80%-20% dose range to below 20% of reference dose, compared to unfocused beams. We conclude that focusing proton beams immediately upstream from tissue entry using permanent magnet assemblies can produce beams with larger peak-to-entrance dose ratios and increased dose delivery efficiencies. Such beams could potentially be used in the clinic to irradiate small-field radiosurgical targets with fewer beams, lower entrance dose and shorter treatment times.


Asunto(s)
Magnetismo , Método de Montecarlo , Fantasmas de Imagen , Protones , Radiocirugia/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Humanos
18.
Med Phys ; 34(9): 3449-56, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17926946

RESUMEN

Measurements were performed to assess the dose equivalent outside a primary proton treatment field, using a silicon-on-insulator (SOI) microdosimeter. The SOI microdosimeter was placed on the surface of an anthropomorphic phantom and dose equivalents were determined as a function of lateral distance from a typical passively scattered and modulated prostate treatment field. Measurements were also completed within a polystyrene plate phantom as a function of depth for a distance of 5 cm from the field edge, as function of lateral distance from field edge at two different depths, and as a function of distance from the distal edge on the central beam axis. The dose equivalent at the surface of the anthropomorphic phantom decreases from 3.9 to 0.18 mSv/Gy when the lateral distance from the proton field edge increases from 2.5 to 60 cm. Measurements along the proton depth dose distribution at a constant distance of 5 cm from the primary field edge indicate a decrease in dose equivalent as a function of depth, with a 38% decrease relative to the surface dose at a depth of 5 cm in polystyrene. Measurements completed as a function of lateral distance from the primary field at two separate depths within polystyrene illustrate a convergence of the dose equivalent at approximately 20 cm from the primary field edge. Past the distal edge of the spread-out Bragg peak dose equivalents decrease exponentially for increasing distance, with an initial value of 1.6 mSv/Gy at 0.6 cm from the distal edge. Silicon microdosimetry measurements were also compared with published results obtained utilizing different measurement techniques. This study demonstrates the applicability of SOI microdosimetry in determining the dose equivalent outside proton treatment fields, and provides valuable information on the dose equivalent both at the surface and at depth experienced by prostate cancer patients treated with protons.


Asunto(s)
Fantasmas de Imagen , Neoplasias de la Próstata/radioterapia , Terapia de Protones , Planificación de la Radioterapia Asistida por Computador , Humanos , Masculino , Poliestirenos/química
19.
Radiat Prot Dosimetry ; 119(1-4): 487-90, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16644965

RESUMEN

In hadron therapy the spectra of secondary particles can be very broad in type and energy. The most accurate calculations of tissue equivalent (TE) absorbed dose and biological effect can be achieved using Monte Carlo (MC) simulations followed by the application of an appropriate radiobiological model. The verification of MC simulations is therefore an important quality assurance (QA) issue in dose planning. We propose a method of verification for MC dose calculations based on measurements of either the integral absorbed dose or the spectra of deposited energies from single secondary particles in non-TE material detectors embedded in a target of interest (phantom). This method was tested in boron neutron capture therapy and fast neutron therapy beams.


Asunto(s)
Algoritmos , Biomimética/instrumentación , Terapia por Captura de Neutrón de Boro/instrumentación , Método de Montecarlo , Neutrones/uso terapéutico , Planificación de la Radioterapia Asistida por Computador/instrumentación , Dosimetría Termoluminiscente/instrumentación , Biomimética/métodos , Terapia por Captura de Neutrón de Boro/métodos , Dosis de Radiación , Planificación de la Radioterapia Asistida por Computador/métodos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
20.
Technol Cancer Res Treat ; 15(1): 3-11, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25616623

RESUMEN

PURPOSE: To evaluate the scattered and secondary radiation fields present in and around a passive proton treatment nozzle. In addition, based on these initial tests and system reliability analysis, to develop, install, and evaluate a radiation shielding structure to protect sensitive electronics against single-event effects (SEE) and improve system reliability. METHODS AND MATERIALS: Landauer Luxel+ dosimeters were used to evaluate the radiation field around one of the gantry-mounted passive proton delivery nozzles at Loma Linda University Medical Center's James M Slater, MD Proton Treatment and Research Center. These detectors use optically stimulated luminescence technology in conjunction with CR-39 to measure doses from X-ray, gamma, proton, beta, fast neutron, and thermal neutron radiation. The dosimeters were stationed at various positions around the gantry pit and attached to racks on the gantry itself to evaluate the dose to electronics. Wax shielding was also employed on some detectors to evaluate the usefulness of this material as a dose moderator. To create the scattered and secondary radiation field in the gantry enclosure, a polystyrene phantom was placed at isocenter and irradiated with 250 MeV protons to a dose of 1.3 kGy over 16 hours. Using the collected data as a baseline, a composite shielding structure was created and installed to shield electronics associated with the precision patient positioner. The effectiveness of this shielding structure was evaluated with Landauer Luxel+ dosimeters and the results correlated against system uptime. RESULTS: The measured dose equivalent ranged from 1 to 60 mSv, with proton/photon, thermal neutron, fast neutron, and overall dose equivalent evaluated. The position of the detector/electronics relative to both isocenter and also neutron-producing devices, such as the collimators and first and second scatterers, definitely had a bearing on the dose received. The addition of 1-inch-thick wax shielding decreased the fast neutron component by almost 50%, yet this yielded a corresponding average increase in thermal neutron dose of 150% as there was no Boron-10 component to capture thermal neutrons. Using these data as a reference, a shielding structure was designed and installed to minimize radiation to electronics associated with the patient positioner. The installed shielding reduced the total dose experienced by these electronics by a factor of 5 while additionally reducing the fast and thermal neutron doses by a factor of 7 and 14, respectively. The reduction in radiation dose corresponded with a reduction of SEE-related downtime of this equipment from 16.5 hours to 2.5 hours over a 6-month reporting period. CONCLUSIONS: The data obtained in this study provided a baseline for radiation exposures experienced by gantry- and pit-mounted electronic systems. It also demonstrated and evaluated a shielding structure design that can be retrofitted to existing electronic system installations. It is expected that this study will benefit future upgrades and facility designs by identifying mechanisms that may minimize radiation dose to installed electronics, thus improving facility uptime.


Asunto(s)
Terapia de Protones/instrumentación , Protección Radiológica , Equipos y Suministros Eléctricos , Diseño de Equipo , Humanos , Fantasmas de Imagen , Radiometría , Dispersión de Radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA