Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Curr Issues Mol Biol ; 46(2): 1413-1423, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38392209

RESUMEN

According to the World Health Organization's statement, myocarditis is an inflammatory myocardium disease. Although an endometrial biopsy remains the diagnostic gold standard, it is an invasive procedure, and thus, cardiac magnetic resonance imaging has become more widely used and is called a non-invasive diagnostic gold standard. Myocarditis treatment is challenging, with primarily symptomatic therapies. An increasing number of studies are searching for novel diagnostic biomarkers and potential therapeutic targets. Microribonucleic acids (miRNAs) are small, non-coding RNA molecules that decrease gene expression by inhibiting the translation or promoting the degradation of complementary mRNAs. Their role in different fields of medicine has been recently extensively studied. This review discusses all relevant preclinical in vitro studies regarding microRNAs in myocarditis. We searched the PubMed database, and after excluding unsuitable studies and clinical and preclinical in vivo trials, we included and discussed 22 preclinical in vitro studies in this narrative review. Several microRNAs presented altered levels in myocarditis patients in comparison to healthy controls. Moreover, microRNAs influenced inflammation, cell apoptosis, and viral replication. Finally, microRNAs were also found to determine the level of myocardial damage. Further studies may show the vital role of microRNAs as novel therapeutic agents or diagnostic/prognostic biomarkers in myocarditis management.

2.
Curr Issues Mol Biol ; 46(3): 2166-2180, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38534756

RESUMEN

The purpose of this study was to evaluate the effect of genistein in nano, micro, and macro forms on the intensity of the DMBA-induced tumor process in rats and to understand the mechanisms of this action. The effect of genistein supplementation on the content of selected eicosanoids (HETEs, HODE, and HEPE) in the serum of rats was evaluated. The levels and expression of genes encoding various pro-inflammatory cytokines (IL-1, IL-6) and MMP-9 in the blood of rats were also investigated. The biological material for the study was blood obtained from female rats of the Sprague Dawley strain (n = 32). The animals were randomly divided into four groups: animals without supplementation, and animals supplemented at a dose of 0.2 mg/kg b.w. (0.1 mg/mL) with macro, micro (587 ± 83 nm), or nano (92 ± 41 nm) genistein. To induce mammary neoplasia (adenocarcinoma), rats were given 7,12-dimethyl-1,2-benz[a]anthracene (DMBA). The content of selected eicosanoids was determined by liquid chromatography with UV detection. An immunoenzymatic method was used to determine the content of cytokines and MMP-9. The expression of the IL-6, IL-1beta, and MMP-9 genes was determined with quantitative real-time PCR (qRT-PCR) using TaqMan probes. Based on the study, it was shown that supplementation of animals with genistein in macro, micro, and nano forms increased the intensity of the tumor process in rats. It was shown that the content of 12-HEPE, HODE, and 12-HETE in the serum of genistein-supplemented rats was statistically significantly lower with respect to the content of the aforementioned markers in the serum of rats receiving only a standard diet, devoid of supplementation. It was found that animals supplemented with nano-, micro-, and macrogenistein had higher levels of metalloproteinase-9, MMP-9, compared to animals without supplementation. There was a significant increase in MMP-9 gene expression in the blood of macrogenistein-supplemented animals, relative to the other groups of rats. On the basis of the study, it was shown that supplementation of animals with nano-, micro-, and macrogenistein had an effect on the development of the tumor process. Dietary supplementation with genistein significantly decreased the level of selected eicosanoids, which may have significant impacts on cancer development and progression.

3.
Int J Mol Sci ; 25(8)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38673738

RESUMEN

The high content of bioactive compounds in Aronia melanocarpa fruit offers health benefits. In this study, the anti-atherosclerotic effect of Aronia extracts was assessed. The impact on the level of adhesion molecules and the inflammatory response of human umbilical vein endothelial cells (HUVECs) was shown in relation to the chemical composition and the stage of ripening of the fruits. Samples were collected between May (green, unripe) and October (red, overripe) on two farms in Poland, which differed in climate. The content of chlorogenic acids, anthocyanins, and carbohydrates in the extracts was determined using HPLC-DAD/RI. The surface expression of ICAM-1 and VCAM-1 in HUVECs was determined by flow cytometry. The mRNA levels of VCAM-1, ICAM-1, IL-6, and MCP-1 were assessed using the quantitative real-time PCR method. The farms' geographical location was associated with the quantity of active compounds in berries and their anti-atherosclerotic properties. Confirmed activity for green fruits was linked to their high chlorogenic acid content.


Asunto(s)
Aterosclerosis , Frutas , Células Endoteliales de la Vena Umbilical Humana , Photinia , Extractos Vegetales , Photinia/química , Humanos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Frutas/química , Aterosclerosis/tratamiento farmacológico , Molécula 1 de Adhesión Celular Vascular/genética , Molécula 1 de Adhesión Celular Vascular/metabolismo , Molécula 1 de Adhesión Intercelular/metabolismo , Molécula 1 de Adhesión Intercelular/genética , Antocianinas/farmacología , Antocianinas/química , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Ácido Clorogénico/farmacología , Ácido Clorogénico/química , Interleucina-6/metabolismo , Interleucina-6/genética
4.
Int J Mol Sci ; 25(1)2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38203363

RESUMEN

Methylenetetrahydrofolate reductase (MTHFR) is a key regulatory enzyme in the one-carbon cycle. This enzyme is essential for the metabolism of methionine, folate, and RNA, as well as for the production of proteins, DNA, and RNA. MTHFR catalyses the irreversible conversion of 5,10-methylenetetrahydrofolate to its active form, 5-methyltetrahydrofolate, a co-substrate for homocysteine remethylation to methionine. Numerous variants of the MTHFR gene have been recognised, among which the C677T variant is the most extensively studied. The C677T polymorphism, which results in the conversion of valine to alanine at codon 222, is associated with reduced activity and an increased thermolability of the enzyme. Impaired MTHFR efficiency is associated with increased levels of homocysteine, which can contribute to increased production of reactive oxygen species and the development of oxidative stress. Homocysteine is acknowledged as an independent risk factor for cardiovascular disease, while chronic inflammation serves as the common underlying factor among these issues. Many studies have been conducted to determine whether there is an association between the C677T polymorphism and an increased risk of cardiovascular disease, hypertension, diabetes, and overweight/obesity. There is substantial evidence supporting this association, although several studies have concluded that the polymorphism cannot be reliably used for prediction. This review examines the latest research on MTHFR polymorphisms and their correlation with cardiovascular disease, obesity, and epigenetic regulation.


Asunto(s)
Enfermedades Cardiovasculares , Humanos , Enfermedades Cardiovasculares/genética , Epigénesis Genética , Metilenotetrahidrofolato Reductasa (NADPH2)/genética , Metionina , Racemetionina , Homocisteína , Obesidad , ARN
5.
Biomedicines ; 11(12)2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38137372

RESUMEN

The study of medicinal plants is important, as they are the natural reserve of potent biologically active compounds. With wide use in traditional medicine and the inclusion of several species (as parts and as a whole plant) in pharmacopeia, species from the genus Salvia L. are known for the broad spectrum of their biological activities. Studies suggest that these plants possess antioxidant, anti-inflammatory, antinociceptive, anticancer, antimicrobial, antidiabetic, antiangiogenic, hepatoprotective, cognitive and memory-enhancing effects. Phenolic acids, terpenoids and flavonoids are important phytochemicals, which are primarily responsible for the medicinal activity of Salvia L. This review collects and summarizes currently available data on the pharmacological properties of sage, outlining its principal physiologically active components, and it explores the molecular mechanism of their biological activity. Particular attention was given to the species commonly found in Kazakhstan, especially to Salvia trautvetteri Regel, which is native to this country.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA