Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Gastroenterol Hepatol ; 39(4): 733-739, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38225761

RESUMEN

BACKGROUND AND AIM: Colonoscopy is a useful method for the diagnosis and management of colorectal diseases. Many computer-aided systems have been developed to assist clinicians in detecting colorectal lesions by analyzing colonoscopy images. However, fisheye-lens distortion and light reflection in colonoscopy images can substantially affect the clarity of these images and their utility in detecting polyps. This study proposed a two-stage deep-learning model to correct distortion and reflections in colonoscopy images and thus facilitate polyp detection. METHODS: Images were collected from the PolypSet dataset, the Kvasir-SEG dataset, and one medical center's patient archiving and communication system. The training, validation, and testing datasets comprised 808, 202, and 1100 images, respectively. The first stage involved the correction of fisheye-related distortion in colonoscopy images and polyp detection, which was performed using a convolutional neural network. The second stage involved the use of generative and adversarial networks for correcting reflective colonoscopy images before the convolutional neural network was used for polyp detection. RESULTS: The model had higher accuracy when it was validated using corrected images than when it was validated using uncorrected images (96.8% vs 90.8%, P < 0.001). The model's accuracy in detecting polyps in the Kvasir-SEG dataset reached 96%, and the area under the receiver operating characteristic curve was 0.94. CONCLUSION: The proposed model can facilitate the clinical diagnosis of colorectal polyps and improve the quality of colonoscopy.


Asunto(s)
Pólipos del Colon , Neoplasias Colorrectales , Aprendizaje Profundo , Humanos , Pólipos del Colon/diagnóstico por imagen , Pólipos del Colon/patología , Colonoscopía/métodos , Redes Neurales de la Computación , Neoplasias Colorrectales/patología
2.
ACS Appl Mater Interfaces ; 15(3): 4495-4504, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36646628

RESUMEN

Self-assembly of ionic molecules into hierarchical ordered structures is a promising route to new types of solid electrolytes with enhanced ion transport. Herein, we report a liquid-crystalline polymer electrolyte membrane that contains three-dimensionally (3D) interconnected ionic pathways. To build this membrane, we used wedge-shaped amphiphilic molecules that have two ionic heads and a lipophilic tail. These molecules were combined with a low content of ionic liquid (5.6 wt %) to form a hexagonal columnar phase, where the self-assembled lipophilic cylinders were surrounded by the ionic shell. Photopolymerization of this phase produced flexible nanostructured films with 3D ionic pathways, which can serve as an electrolyte layer in soft robotic actuators. Ionic transport in the 3D pathways leads to shape memory capability as well as durable bending actuation with a voltage-controllable blocking force. Furthermore, we find a significant enhancement of actuation for the nanostructured electrolyte compared with the corresponding amorphous electrolyte.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA