Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nanotechnology ; 32(14): 145708, 2021 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-33326947

RESUMEN

Si δ-doped AlGaAs/InGaAs/AlGaAs quantum well (QW) structure is commonly adopted as one of the core elements in modern electric and optoelectronic devices. Here, the time dependent photoconductivity spectra along the active InGaAs QW channel in a dual and symmetric Si δ-doped AlGaAs/InGaAs/AlGaAs QW structure are systematically studied under various temperatures (T = 80-300 K) and various incident photon energies (E in = 1.10-1.88 eV) and intensities. In addition to positive photoconductivity, negative photoconductivity (NPC) was observed and attributed to two origins. For T = 180-240 K with E in = 1.51-1.61 eV, the trapping of the photo-excited electrons by the interface states located inside the conduction band of InGaAs QW layer is one of the origins for NPC curves. For T = 80-120 K with E in = 1.10-1.63 eV, the photoexcitation of the excess 'supersaturated' electrons within the active InGaAs QW caused by the short cooling process is another origin.

2.
Nanotechnology ; 31(22): 225703, 2020 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-32050176

RESUMEN

The pristine and diethylenetriamine (DETA)-doped tungsten disulfide quantum dots (WS2 QDs) with an average lateral size of about 5 nm have been synthesized using pulsed laser ablation (PLA). Introduction of the synthesized WS2 QDs on the InGaAs/AlGaAs quantum wells (QWs) can improve the photoluminescence (PL) of the InGaAs/AlGaAs QW as high as 6 fold. On the basis of the time-resolved PL and Kelvin probe measurements, the PL enhancement is attributed to the carrier transfer from the pristine or DETA-doped WS2 QDs to the InGaAs/AlGaAs QW. A heterostructure band diagram is proposed for explaining the carrier transfer, which increases the hole densities in the QW and enhances its PL intensity. This study is expected to be beneficial for the development of the InGaAs-based optoelectronic devices.

3.
Sci Rep ; 10(1): 12503, 2020 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-32719403

RESUMEN

Temperature (T = 40 ~ 300 K) dependence of Hall-effect analysis on the dual Si-δ-doped AlGaAs/InGaAs/AlGaAs quantum-well (QW) structures with various space layer thicknesses (tS = 5, 10 and 15 nm) was performed. An interesting hysteresis behavior of electron sheet concentration [n2D(T)] was observed for tS = 10 and 15 nm but not for tS = 5 nm. A model involving two different activation barriers encountered respectively by electrons in the active QW and by electrons in the δ-doped layers is proposed to account for the hysteresis behavior. However, for small enough tS (= 5 nm ≤ 2.5 s, where s = 2.0 nm is the standard deviation of the Gaussian fit to the Si-δ-doped profile), the distribution of Si dopants near active QW acted as a specific form of "modulation doping" and can not be regarded as an ideal δ-doping. These Si dopants nearby the active QW effectively increase the magnitude of n2D, and hence no hysteresis curve was observed. Finally, effects from tS on the T-dependence of electron mobility in active QW channel are also discussed.

4.
J Phys Condens Matter ; 25(38): 386005, 2013 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-23988572

RESUMEN

Magnetic proximity effects in single-crystalline NixMn100-x/Ni(/Co) bilayers on Cu3Au(001) are investigated for in-plane (IP) and out-of-plane (OoP) magnetization by means of the longitudinal and polar magneto-optical Kerr effect. Attention is paid to the influence on concentration- and thickness-dependent antiferromagnetic ordering (TAFM) and blocking (Tb) temperatures as well as the exchange bias field (Heb). For all the NixMn100-x films under study in contact with IP Ni, increasing TAFM is observed with decreasing Ni concentration from ∼50 to ∼20%, whereas only a slight change in TAFM is observed for the OoP case. Between ∼28% and ∼35% Ni concentration, a crossover temperature exists below which TAFM for the IP samples is higher than for the OoP samples and vice versa. Tb is higher for the IP case than for OoP, except for an equi-atomic NiMn film, while Heb increases significantly for both magnetization directions with decreasing x. These results are attributed to: (i) a rotation of the non-collinear 3Q-like spin structure of NixMn100-x from the more-OoP to the more-IP direction for decreasing Ni concentration x, along with an associated increased magnetic anisotropy, and (ii) a smaller domain wall width within the NixMn100-x films at smaller x, leading to a smaller thickness required to establish exchange bias at a fixed temperature.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA