Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(7)2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35409252

RESUMEN

YEATS (YAF9, ENL, AF9, TAF14, SAS5) family proteins recognize acylated histones and in turn regulate chromatin structure, gene transcription, and stress signaling. The chromosomal translocations of ENL and mixed lineage leukemia are considered oncogenic drivers in acute myeloid leukemia and acute lymphoid leukemia. However, known ENL YEATS domain inhibitors have failed to suppress the proliferation of 60 tested cancer cell lines. Herein, we identified four hits from the NMR fragment-based screening against the AF9 YEATS domain. Ten inhibitors of new chemotypes were then designed and synthesized guided by two complex structures and affinity assays. The complex structures revealed that these inhibitors formed an extra hydrogen bond to AF9, with respect to known ENL inhibitors. Furthermore, these inhibitors demonstrated antiproliferation activities in AF9-sensitive HGC-27 cells, which recapitulated the phenotype of the CRISPR studies against AF9. Our work will provide the basis for further structured-based optimization and reignite the campaign for potent AF9 YEATS inhibitors as a precise treatment for AF9-sensitive cancers.


Asunto(s)
Histonas , Leucemia Mieloide Aguda , Histonas/metabolismo , Humanos , Oncogenes , Dominios Proteicos
2.
Nucleic Acids Res ; 47(14): 7648-7665, 2019 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-31251801

RESUMEN

Mitochondria are essential molecular machinery for the maintenance of cellular energy supply by the oxidative phosphorylation system (OXPHOS). Mitochondrial transcription factor B1 (TFB1M) is a dimethyltransferase that maintains mitochondrial homeostasis by catalyzing dimethylation of two adjacent adenines located in helix45 (h45) of 12S rRNA. This m62A modification is indispensable for the assembly and maturation of human mitochondrial ribosomes. However, both the mechanism of TFB1M catalysis and the precise function of TFB1M in mitochondrial homeostasis are unknown. Here we report the crystal structures of a ternary complex of human (hs) TFB1M-h45-S-adenosyl-methionine and a binary complex hsTFB1M-h45. The structures revealed a distinct mode of hsTFB1M interaction with its rRNA substrate and with the initial enzymatic state involved in m62A modification. The suppression of hsTFB1M protein level or the overexpression of inactive hsTFB1M mutants resulted in decreased ATP production and reduced expression of components of the mitochondrial OXPHOS without affecting transcription of the corresponding genes and their localization to the mitochondria. Therefore, hsTFB1M regulated the translation of mitochondrial genes rather than their transcription via m62A modification in h45.


Asunto(s)
Proteínas de Unión al ADN/genética , Genes Mitocondriales/genética , Mitocondrias/genética , Proteínas Mitocondriales/genética , Biosíntesis de Proteínas , ARN Ribosómico/genética , Factores de Transcripción/genética , Secuencia de Bases , Cristalografía por Rayos X , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Homeostasis/genética , Humanos , Metilación , Mitocondrias/metabolismo , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Ribosomas Mitocondriales/metabolismo , Mutación , Fosforilación Oxidativa , Unión Proteica , ARN Ribosómico/química , ARN Ribosómico/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo
3.
J Youth Adolesc ; 50(4): 599-612, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33449287

RESUMEN

Anxiety in youth has been found to be a risk factor for the development of psychological problems and psychiatric symptoms in adulthood. Interparental conflict is considered an important factor in the emergence of symptoms of youth anxiety because conflicts between parents negatively affect parent-child and sibling relationships. Whereas some meta-analyses have investigated the association between interparental conflict and youth anxiety, the exact roles of certain moderators in this association are still not fully clear. Based on the PRISMA method, the present study used a three-level meta-analysis to obtain reliable estimates of effect sizes and examined a range of moderators (sample, publication, study design and outcome, and assessment characteristics). After a systematic search for articles published before September 2020, the present study identified 38 studies, with 12,380 young people and 222 effect sizes. The analysis revealed a significant positive association between interparental conflict and youth anxiety. Moreover, the present study found a significant moderating effect of interparental conflict variable. More specifically, youth anxiety was more strongly associated with parents' use of overt conflict style than with their use of cooperative conflict style. Study design was also found to be a significant moderator of the association between interparental conflict and youth anxiety. This association was smaller in longitudinal than in cross-sectional studies. Finally, the present results demonstrated that informant of interparental conflict was a significant moderator. A stronger correlation between these two variables was found when interparental conflict was reported by children than by parents. The results support the growing consensus that interparental conflict should be addressed when treating youth anxiety.


Asunto(s)
Conflicto Familiar , Relaciones Padres-Hijo , Adolescente , Adulto , Ansiedad , Niño , Estudios Transversales , Humanos , Padres
4.
Genes Dev ; 26(12): 1376-91, 2012 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-22713874

RESUMEN

Histone acetylation is a hallmark for gene transcription. As a histone acetyltransferase, MOZ (monocytic leukemia zinc finger protein) is important for HOX gene expression as well as embryo and postnatal development. In vivo, MOZ forms a tetrameric complex with other subunits, including several chromatin-binding modules with regulatory functions. Here we report the solution structure of the tandem PHD (plant homeodomain) finger (PHD12) of human MOZ in a free state and the 1.47 Å crystal structure in complex with H3K14ac peptide, which reveals the structural basis for the recognition of unmodified R2 and acetylated K14 on histone H3. Moreover, the results of chromatin immunoprecipitation (ChIP) and RT-PCR assays indicate that PHD12 facilitates the localization of MOZ onto the promoter locus of the HOXA9 gene, thereby promoting the H3 acetylation around the promoter region and further up-regulating the HOXA9 mRNA level. Taken together, our findings suggest that the combinatorial readout of the H3R2/K14ac by PHD12 might represent an important epigenetic regulatory mechanism that governs transcription and also provide a clue of cross-talk between the MOZ complex and histone H3 modifications.


Asunto(s)
Arginina/metabolismo , Histona Acetiltransferasas/química , Histona Acetiltransferasas/metabolismo , Histonas/metabolismo , Proteínas de Homeodominio/genética , Lisina/metabolismo , Transcripción Genética , Acetilación , Secuencia de Aminoácidos , Regulación de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Humanos , Modelos Biológicos , Modelos Moleculares , Datos de Secuencia Molecular , Regiones Promotoras Genéticas/genética , Unión Proteica , Estructura Terciaria de Proteína , Transporte de Proteínas
5.
Nucleic Acids Res ; 45(16): 9625-9639, 2017 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-28934467

RESUMEN

In bacteria, small non-coding RNAs (sRNAs) could function in gene regulations under variable stress responses. DsrA is an ∼90-nucleotide Hfq-dependent sRNA found in Escherichia coli. It regulates the translation and degradation of multiple mRNAs, such as rpoS, hns, mreB and rbsD mRNAs. However, its functional structure and particularly how it regulates multiple mRNAs remain obscure. Using NMR, we investigated the solution structures of the full-length and isolated stem-loops of DsrA. We first solved the NMR structure of the first stem-loop (SL1), and further studied the melting process of the SL1 induced by the base-pairing with the rpoS mRNA and the A-form duplex formation of the DsrA/rpoS complex. The secondary structure of the second stem-loop (SL2) was also determined, which contains a lower stem and an upper stem with distinctive stability. Interestingly, two conformational states of SL2 in dynamic equilibrium were observed in our NMR spectra, suggesting that the conformational selection may occur during the base-pairing between DsrA and mRNAs. In summary, our study suggests that the conformational plasticity of DsrA may represent a special mechanism sRNA employed to deal with its multiple regulatory targets of mRNA.


Asunto(s)
ARN Pequeño no Traducido/química , ARN Pequeño no Traducido/metabolismo , Proteínas Bacterianas/genética , Emparejamiento Base , Escherichia coli/genética , Espectroscopía de Resonancia Magnética , Conformación de Ácido Nucleico , ARN Mensajero/química , ARN Mensajero/metabolismo , Factor sigma/genética
6.
Nucleic Acids Res ; 45(20): 12005-12014, 2017 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-29036323

RESUMEN

PUF (Pumilio/fem-3 mRNA binding factor) proteins, a conserved family of RNA-binding proteins, recognize specific single-strand RNA targets in a specific modular way. Although plants have a greater number of PUF protein members than do animal and fungal systems, they have been the subject of fewer structural and functional investigations. The aim of this study was to elucidate the involvement of APUM23, a nucleolar PUF protein in the plant Arabidopsis, in pre-rRNA processing. APUM23 is distinct from classical PUF family proteins, which are located in the cytoplasm and bind to 3'UTRs of mRNA to modulate mRNA expression and localization. We found that the complete RNA target sequence of APUM23 comprises 11 nt in 18S rRNA at positions 1141-1151. The complex structure shows that APUM23 has 10 PUF repeats; it assembles into a C-shape, with an insertion located within the inner concave surface. We found several different RNA recognition features. A notable structural feature of APUM23 is an insertion in the third PUF repeat that participates in nucleotide recognition and maintains the correct conformation of the target RNA. Our findings elucidate the mechanism for APUM23's-specific recognition of 18S rRNA.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , ARN de Planta/metabolismo , ARN Ribosómico 18S/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Secuencia de Bases , Sitios de Unión/genética , Calorimetría/métodos , Cristalografía por Rayos X , Modelos Moleculares , Mutación , Conformación de Ácido Nucleico , Unión Proteica , Dominios Proteicos , Estructura Secundaria de Proteína , ARN de Planta/química , ARN de Planta/genética , ARN Ribosómico 18S/química , ARN Ribosómico 18S/genética , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Termodinámica
7.
Genes Dev ; 25(19): 2106-17, 2011 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-21979921

RESUMEN

Hfq is a bacterial post-transcriptional regulator. It facilitates base-pairing between sRNA and target mRNA. Hfq mediates DsrA-dependent translational activation of rpoS mRNA at low temperatures. rpoS encodes the stationary-phase σ factor σ(S), which is the central regulator in general stress response. However, structural information on Hfq-DsrA interaction is not yet available. Although Hfq is reported to hydrolyze ATP, the ATP-binding site is still unknown. Here, we report a ternary crystal complex structure of Escherichia coli Hfq bound to a major Hfq recognition region on DsrA (AU(6)A) together with ADP, and a crystal complex structure of Hfq bound to ADP. AU(6)A binds to the proximal and distal sides of two Hfq hexamers. ADP binds to a purine-selective site on the distal side and contacts conserved arginine or glutamine residues on the proximal side of another hexamer. This binding mode is different from previously postulated. The cooperation of two different Hfq hexamers upon nucleic acid binding in solution is verified by fluorescence polarization and solution nuclear magnetic resonance (NMR) experiments using fragments of Hfq and DsrA. Fluorescence resonance energy transfer conducted with full-length Hfq and DsrA also supports cooperation of Hfq hexamers upon DsrA binding. The implications of Hfq hexamer cooperation have been discussed.


Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Proteína de Factor 1 del Huésped/química , Modelos Moleculares , ARN Pequeño no Traducido/metabolismo , Adenosina Difosfato/metabolismo , Sitios de Unión , Polímeros , Unión Proteica , Estructura Terciaria de Proteína
8.
Int J Mol Sci ; 20(13)2019 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-31262091

RESUMEN

The TDP-43 is originally a nuclear protein but translocates to the cytoplasm in the pathological condition. TDP-43, as an RNA-binding protein, consists of two RNA Recognition Motifs (RRM1 and RRM2). RRMs are known to involve both protein-nucleotide and protein-protein interactions and mediate the formation of stress granules. Thus, they assist the entire TDP-43 protein with participating in neurodegenerative and cancer diseases. Consequently, they are potential therapeutic targets. Protein-observed and ligand-observed nuclear magnetic resonance (NMR) spectroscopy were used to uncover the small molecule inhibitors against the tandem RRM of TDP-43. We identified three hits weakly binding the tandem RRMs using the ligand-observed NMR fragment-based screening. The binding topology of these hits is then depicted by chemical shift perturbations (CSP) of the 15N-labeled tandem RRM and RRM2, respectively, and modeled by the CSP-guided High Ambiguity Driven biomolecular DOCKing (HADDOCK). These hits mainly bind to the RRM2 domain, which suggests the druggability of the RRM2 domain of TDP-43. These hits also facilitate further studies regarding the hit-to-lead evolution against the TDP-43 RRM domain.


Asunto(s)
Proteínas de Unión al ADN/antagonistas & inhibidores , Simulación del Acoplamiento Molecular , Bibliotecas de Moléculas Pequeñas/farmacología , Sitios de Unión , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Humanos , Ligandos , Espectroscopía de Resonancia Magnética , Unión Proteica , Bibliotecas de Moléculas Pequeñas/química
9.
J Biol Chem ; 292(39): 16221-16234, 2017 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-28808060

RESUMEN

MEX-3 is a K-homology (KH) domain-containing RNA-binding protein first identified as a translational repressor in Caenorhabditis elegans, and its four orthologs (MEX-3A-D) in human and mouse were subsequently found to have E3 ubiquitin ligase activity mediated by a RING domain and critical for RNA degradation. Current evidence implicates human MEX-3C in many essential biological processes and suggests a strong connection with immune diseases and carcinogenesis. The highly conserved dual KH domains in MEX-3 proteins enable RNA binding and are essential for the recognition of the 3'-UTR and post-transcriptional regulation of MEX-3 target transcripts. However, the molecular mechanisms of translational repression and the consensus RNA sequence recognized by the MEX-3C KH domain are unknown. Here, using X-ray crystallography and isothermal titration calorimetry, we investigated the RNA-binding activity and selectivity of human MEX-3C dual KH domains. Our high-resolution crystal structures of individual KH domains complexed with a noncanonical U-rich and a GA-rich RNA sequence revealed that the KH1/2 domains of human MEX-3C bound MRE10, a 10-mer RNA (5'-CAGAGUUUAG-3') consisting of an eight-nucleotide MEX-3-recognition element (MRE) motif, with high affinity. Of note, we also identified a consensus RNA motif recognized by human MEX-3C. The potential RNA-binding sites in the 3'-UTR of the human leukocyte antigen serotype (HLA-A2) mRNA were mapped with this RNA-binding motif and further confirmed by fluorescence polarization. The binding motif identified here will provide valuable information for future investigations of the functional pathways controlled by human MEX-3C and for predicting potential mRNAs regulated by this enzyme.


Asunto(s)
Antígeno HLA-A2/metabolismo , Modelos Moleculares , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Elementos de Respuesta , Ubiquitina-Proteína Ligasas/metabolismo , Regiones no Traducidas 3' , Sitios de Unión , Cristalografía por Rayos X , Antígeno HLA-A2/química , Antígeno HLA-A2/genética , Humanos , Enlace de Hidrógeno , Cinética , Conformación de Ácido Nucleico , Motivos de Nucleótidos , Oligorribonucleótidos/química , Oligorribonucleótidos/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Dominios RING Finger , ARN/química , ARN/metabolismo , ARN Mensajero/química , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/genética
10.
Nucleic Acids Res ; 44(2): 969-82, 2016 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-26673708

RESUMEN

The YTH domain-containing protein Mmi1, together with other factors, constitutes the machinery used to selectively remove meiosis-specific mRNA during the vegetative growth of fission yeast. Mmi1 directs meiotic mRNAs to the nuclear exosome for degradation by recognizing their DSR (determinant of selective removal) motif. Here, we present the crystal structure of the Mmi1 YTH domain in the apo state and in complex with a DSR motif, demonstrating that the Mmi1 YTH domain selectively recognizes the DSR motif. Intriguingly, Mmi1 also contains a potential m(6)A (N(6)-methyladenine)-binding pocket, but its binding of the DSR motif is dependent on a long groove opposite the m(6)A pocket. The DSR-binding mode is distinct from the m(6)A RNA-binding mode utilized by other YTH domains. Furthermore, the m(6)A pocket cannot bind m(6)A RNA. Our structural and biochemical experiments uncover the mechanism of the YTH domain in binding the DSR motif and help to elucidate the function of Mmi1.


Asunto(s)
ARN/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/metabolismo , Factores de Escisión y Poliadenilación de ARNm/química , Factores de Escisión y Poliadenilación de ARNm/metabolismo , Adenina/análogos & derivados , Adenina/química , Adenina/metabolismo , Cristalografía por Rayos X , Modelos Moleculares , Motivos de Nucleótidos , Estructura Terciaria de Proteína , ARN/química , Proteínas de Schizosaccharomyces pombe/genética , Uracilo/química , Uracilo/metabolismo , Factores de Escisión y Poliadenilación de ARNm/genética
11.
J Biol Chem ; 291(32): 16709-19, 2016 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-27311713

RESUMEN

ARAP3 (Arf-GAP with Rho-GAP domain, ANK repeat, and PH domain-containing protein 3) is unique for its dual specificity GAPs (GTPase-activating protein) activity for Arf6 (ADP-ribosylation factor 6) and RhoA (Ras homolog gene family member A) regulated by phosphatidylinositol 3,4,5-trisphosphate and a small GTPase Rap1-GTP and is involved in regulation of cell shape and adhesion. However, the molecular interface between the ARAP3-RhoGAP domain and RhoA is unknown, as is the substrates specificity of the RhoGAP domain. In this study, we solved the crystal structure of RhoA in complex with the RhoGAP domain of ARAP3. The structure of the complex presented a clear interface between the RhoGAP domain and RhoA. By analyzing the crystal structure and in combination with in vitro GTPase activity assays and isothermal titration calorimetry experiments, we identified the crucial residues affecting RhoGAP activity and substrates specificity among RhoA, Rac1 (Ras-related C3 botulinum toxin substrate 1), and Cdc42 (cell division control protein 42 homolog).


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Activadoras de GTPasa/química , Proteína de Unión al GTP rhoA/química , Factor 6 de Ribosilación del ADP , Factores de Ribosilacion-ADP/química , Factores de Ribosilacion-ADP/genética , Factores de Ribosilacion-ADP/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Cristalografía por Rayos X , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Humanos , Fosfatos de Fosfatidilinositol/química , Fosfatos de Fosfatidilinositol/genética , Fosfatos de Fosfatidilinositol/metabolismo , Dominios Proteicos , Complejo Shelterina , Relación Estructura-Actividad , Proteínas de Unión a Telómeros/química , Proteínas de Unión a Telómeros/genética , Proteínas de Unión a Telómeros/metabolismo , Proteína de Unión al GTP rhoA/genética
12.
Biochim Biophys Acta Gen Subj ; 1861(1 Pt A): 3061-3070, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27721047

RESUMEN

BACKGROUND: The delineation of intrinsically weak interactions between novel targets and fragment screening hits has long limited the pace of hit-to-lead evolution. Rho guanine-nucleotide dissociation inhibitor 2 (RhoGDI2) is a novel target that lacks any chemical probes for the treatment of tumor metastasis. METHODS: Protein-observed and ligand-observed NMR spectroscopy was used to characterize the weak interactions between RhoGDI2 and fragment screening hits. RESULTS: We identified three hits of RhoGDI2 using streamlined NMR fragment-based screening. The binding site residues were assigned using non-uniformly sampled Cα- and Hα-based three dimensional NMR spectra. The molecular docking to the proposed geranylgeranyl binding pocket of RhoGDI2 was guided by NMR restraints of chemical shift perturbations and ligand-observed transferred paramagnetic relaxation enhancement. We further validated the weak RhoGDI2-hit interactions using mutagenesis and structure-affinity analysis. CONCLUSIONS: Weak interactions between RhoGDI2 and fragment screening hits were delineated using an integrated NMR approach. GENERAL INTERESTS: Binders to RhoGDI2 as a potential anti-cancer target have been first reported, and their weak interactions were depicted using NMR spectroscopy. Our work highlights the powerfulness and the versatility of the integrative NMR techniques to provide valuable structural insight into the intrinsically weak interactions between RhoGDI2 and the fragment screening hits, which could hardly be conceived using other biochemical techniques.


Asunto(s)
Espectroscopía de Resonancia Magnética/métodos , Fragmentos de Péptidos/metabolismo , Inhibidor beta de Disociación del Nucleótido Guanina rho/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Humanos , Ligandos , Modelos Moleculares , Reproducibilidad de los Resultados , Bibliotecas de Moléculas Pequeñas/metabolismo , Inhibidor beta de Disociación del Nucleótido Guanina rho/química
13.
Phys Chem Chem Phys ; 19(31): 21152-21164, 2017 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-28752165

RESUMEN

In Escherichia coli, hexameric Hfq is an important RNA chaperone that facilitates small RNA-mediated post-transcriptional regulation. The Hfq monomer consists of an evolutionarily conserved Sm domain (residues 1-65) and a flexible C-terminal region (residues 66-102). It has been recognized that the existence of the C-terminal region is important for the function of Hfq, but its detailed structural and dynamic properties remain elusive due to its disordered nature. In this work, using integrative experimental techniques, such as nuclear magnetic resonance spectroscopy and small-angle X-ray scattering, as well as multi-scale computational simulations, new insights into the structure and dynamics of the C-terminal region in the context of the Hfq hexamer are provided. Although the C-terminal region is intrinsically disordered, some residues (83-86) are motionally restricted. The hexameric core may affect the secondary structure propensity of the C-terminal region, due to transient interactions between them. The residues at the rim and the proximal side of the core have significantly more transient contacts with the C-terminal region than those residues at the distal side, which may facilitate the function of the C-terminal region in the release of double-stranded RNAs and the cycling of small non-coding RNAs. Structure ensembles constructed by fitting the experimental data also support that the C-terminal region prefers to locate at the proximal side. From multi-scale simulations, we propose that the C-terminal region may play a dual role of steric effect (especially at the proximal side) and recruitment (at the both sides) in the binding process of RNA substrates. Interestingly, we have found that these motionally restricted residues may serve as important binding sites for the incoming RNAs that is probably driven by favorable electrostatic interactions. These integrative studies may aid in our understanding of the functional role of the C-terminal region of Hfq.


Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Proteína de Factor 1 del Huésped/química , Simulación de Dinámica Molecular , ARN/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteína de Factor 1 del Huésped/genética , Proteína de Factor 1 del Huésped/metabolismo , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Estructura Terciaria de Proteína , ARN/química , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Dispersión del Ángulo Pequeño , Difracción de Rayos X
14.
Nucleic Acids Res ; 43(4): 2400-11, 2015 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-25670676

RESUMEN

Small RNA OxyS is induced during oxidative stress in Escherichia coli and it is an Hfq-dependent negative regulator of mRNA translation. OxyS represses the translation of fhlA and rpoS mRNA, which encode the transcriptional activator and σ(s) subunit of RNA polymerase, respectively. However, little is known regarding how Hfq, an RNA chaperone, interacts with OxyS at the atomic level. Here, using fluorescence polarization and tryptophan fluorescence quenching assays, we verified that the A-rich linker region of OxyS sRNA binds Hfq at its distal side. We also report two crystal structures of Hfq in complex with A-rich RNA fragments from this linker region. Both of these RNA fragments bind to the distal side of Hfq and adopt a different conformation compared with those previously reported for the (A-R-N)n tripartite recognition motif. Furthermore, using fluorescence polarization, electrophoresis mobility shift assays and in vivo translation assays, we found that an Hfq mutant, N48A, increases the binding affinity of OxyS for Hfq in vitro but is defective in the negative regulation of fhlA translation in vivo, suggesting that the normal function of OxyS depends on the details of the interaction with Hfq that may be related to the rapid recycling of Hfq in the cell.


Asunto(s)
Proteínas de Escherichia coli/química , Proteína de Factor 1 del Huésped/química , ARN Pequeño no Traducido/química , Adenina/química , Proteínas de Escherichia coli/metabolismo , Proteína de Factor 1 del Huésped/metabolismo , Modelos Moleculares , Unión Proteica , Biosíntesis de Proteínas , ARN Pequeño no Traducido/metabolismo
15.
Angew Chem Int Ed Engl ; 56(42): 12982-12986, 2017 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-28846825

RESUMEN

The characterization of protein-ligand interaction modes becomes recalcitrant in the NMR intermediate exchange regime as the interface resonances are broadened beyond detection. Here, we determined the 19 F low-populated bound-state pseudocontact shifts (PCSs) of mono- and di-fluorinated inhibitors of the BRM bromodomain using a highly skewed protein/ligand ratio. The bound-state 19 F PCSs were retrieved from 19 F chemical exchange saturation transfer (CEST) in the presence of the lanthanide-labeled protein, which was termed the 19 F PCS-CEST approach. These PCSs enriched in spatial information enabled the identification of best-fitting poses, which agree well with the crystal structure of a more soluble analog in complex with the BRM bromodomain. This approach fills the gap of the NMR structural characterization of lead-like inhibitors with moderate affinities to target proteins, which are essential for structure-guided hit-to-lead evolution.


Asunto(s)
Flúor/química , Ligandos , Resonancia Magnética Nuclear Biomolecular , Factores de Transcripción/química , Sitios de Unión , Quelantes/química , Humanos , Elementos de la Serie de los Lantanoides/química , Simulación del Acoplamiento Molecular , Mutagénesis Sitio-Dirigida , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
16.
J Biol Chem ; 290(10): 6630-8, 2015 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-25601084

RESUMEN

The NuRD complex is a conserved transcriptional coregulator that contains both chromatin-remodeling and histone deacetylase activities. Mutations of PHF6 are found in patients with Börjeson-Forssman-Lehmann syndrome, T-cell acute lymphoblastic leukemia, or acute myeloid leukemia. Recently, PHF6 was identified to interact with the NuRD complex, and this interaction is mediated by the RBBP4 component. However, little is known about the molecular basis for the interaction. Here, we present the crystal structure of the complex of the NuRD subunit RBBP4 bound to the PHF6 peptide (residues 162-170). The PHF6 peptide binds to the top surface of the RBBP4 ß-propeller. A pair of positively charged residues of the PHF6 peptide insert into the negatively charged pocket of RBBP4, which is critical for the interaction between PHF6 and RBBP4. Corresponding PHF6 mutants impair this interaction in vitro and in vivo. Structural comparison shows that the PHF6-binding pocket overlaps with FOG1 and histone H3 on RBBP4/Nurf55, but it is distinct from the pocket recognizing histone H4, Su(z)12, and MTA1. We further show that the middle disordered region (residues 145-207, containing the RBBP4-binding motif) is sufficient for the transcriptional repression mediated by PHF6 on the GAL4 reporter, and knockdown of RBBP4 diminished the PHF6-mediated repression. Our RBBP4-PHF6 complex structure provides insights into the molecular basis of PHF6-NuRD complex interaction and implicates a role for PHF6 in chromatin structure modulation and gene regulation.


Asunto(s)
Proteínas Portadoras/química , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/química , Péptidos/química , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Proteína 4 de Unión a Retinoblastoma/química , Secuencia de Aminoácidos , Proteínas Portadoras/genética , Ensamble y Desensamble de Cromatina , Cristalografía por Rayos X , Células HEK293 , Humanos , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Péptidos/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología , Unión Proteica , Mapas de Interacción de Proteínas , Estructura Terciaria de Proteína , Proteínas Represoras , Proteína 4 de Unión a Retinoblastoma/genética , Proteína 4 de Unión a Retinoblastoma/metabolismo , Transcripción Genética
17.
Chembiochem ; 17(15): 1456-63, 2016 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-27194508

RESUMEN

The complex biology associated with inhibition of bromodomain and extra-terminal (BET) domains by chemical probes has attracted increasing attention, and there is a need to identify non-BET bromodomain (BD) inhibitors. Several potent inhibitors of the BRD9 BD have recently been discovered, with anticancer and anti-inflammation activity. However, its paralogue, BRD7 BD, remains unexploited. Here, we identified new chemotypes targeting BRD7 BD by using NMR fragment-based screening. BRD7/9 BDs exhibit similar patterns of chemical-shift perturbation upon the titration of hit compound 1. The crystal structure revealed that 1 repels the Y222 group of BRD9 BD in a similar way to that for butyryllysine, but not acetyllysine and known inhibitors. Hit 1 induced less rearrangement of residue F161 of BRD9 BD than acetyllysine, butyryllysine, and crotonyllysine. Our study provides structural insight into a new generation of butyryllysine mimics for probing the function of BRD7/9 BD.


Asunto(s)
Proteínas Cromosómicas no Histona/química , Factores de Transcripción/química , Butiratos , Proteínas Cromosómicas no Histona/antagonistas & inhibidores , Cristalografía por Rayos X , Humanos , Lisina/química , Espectroscopía de Resonancia Magnética/métodos , Imitación Molecular , Sondas Moleculares , Fragmentos de Péptidos , Dominios Proteicos , Factores de Transcripción/antagonistas & inhibidores
18.
Chemistry ; 22(28): 9556-64, 2016 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-27276173

RESUMEN

Nuclear magnetic resonance (NMR) is a powerful tool to interrogate protein structure and dynamics residue by residue. However, the prerequisite chemical-shift assignment remains a bottleneck for large proteins due to the fast relaxation and the frequency degeneracy of the (13) Cα nuclei. Herein, we present a covariance NMR strategy to assign the backbone chemical shifts by using only HN(CO)CA and HNCA spectra that has a high sensitivity even for large proteins. By using the peak linear correlation coefficient (LCC), which is a sensitive probe even for tiny chemical-shift displacements, we correctly identify the fidelity of approximately 92 % cross-peaks in the covariance spectrum, which is thus a significant improvement on the approach developed by Snyder and Brüschweiler (66 %) and the use of spectral derivatives (50 %). Thus, we calculate the 4D covariance spectrum from HN(CO)CA and HNCA experiments, in which cross-peaks with LCCs above a universal threshold are considered as true correlations. This 4D covariance spectrum enables the sequential assignment of a 42 kDa maltose binding protein (MBP), in which about 95 % residues are successfully assigned with a high accuracy of 98 %. Our LCC approach, therefore, paves the way for a residue-by-residue study of the backbone structure and dynamics of large proteins.


Asunto(s)
Isótopos de Carbono/química , Isótopos de Nitrógeno/química , Resonancia Magnética Nuclear Biomolecular/métodos , Proteínas/química , Secuencia de Aminoácidos , Carbonilación Proteica , Proteínas/metabolismo , Vibración
19.
Nucleic Acids Res ; 42(1): 509-25, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24081582

RESUMEN

Transfer RNA (tRNA) methylation is necessary for the proper biological function of tRNA. The N(1) methylation of guanine at Position 9 (m(1)G9) of tRNA, which is widely identified in eukaryotes and archaea, was found to be catalyzed by the Trm10 family of methyltransferases (MTases). Here, we report the first crystal structures of the tRNA MTase spTrm10 from Schizosaccharomyces pombe in the presence and absence of its methyl donor product S-adenosyl-homocysteine (SAH) and its ortholog scTrm10 from Saccharomyces cerevisiae in complex with SAH. Our crystal structures indicated that the MTase domain (the catalytic domain) of the Trm10 family displays a typical SpoU-TrmD (SPOUT) fold. Furthermore, small angle X-ray scattering analysis reveals that Trm10 behaves as a monomer in solution, whereas other members of the SPOUT superfamily all function as homodimers. We also performed tRNA MTase assays and isothermal titration calorimetry experiments to investigate the catalytic mechanism of Trm10 in vitro. In combination with mutational analysis and electrophoretic mobility shift assays, our results provide insights into the substrate tRNA recognition mechanism of Trm10 family MTases.


Asunto(s)
Metiltransferasas/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Schizosaccharomyces pombe/química , ARNt Metiltransferasas/química , Secuencia de Aminoácidos , Biocatálisis , Dominio Catalítico , Cristalografía por Rayos X , Guanina/química , Metiltransferasas/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , ARN de Transferencia/metabolismo , S-Adenosilhomocisteína/química , S-Adenosilmetionina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , ARNt Metiltransferasas/metabolismo
20.
Proc Natl Acad Sci U S A ; 110(21): E1879-88, 2013 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-23613586

RESUMEN

Noncoding RNAs can modulate gene expression by directing modifications to histones that alter chromatin structure. In fission yeast, siRNAs produced via the RNAi pathway direct modifications associated with heterochromatin formation. siRNAs associate with the RNAi effector protein Argonaute 1 (Ago1), targeting the Ago1-containing RNA-induced transcriptional silencing (RITS) complex to homologous nascent transcripts. This promotes recruitment of the Clr4 complex (CLRC), which mediates methylation of histone H3 on lysine 9 (H3K9me) in cognate chromatin. A key question is how the RNAi and chromatin modification machineries are connected. Stc1 is a small protein recently shown to associate with both Ago1 and CLRC and to play a pivotal role in mediating the RNAi-dependent recruitment of CLRC to chromatin. To understand its mode of action, we have performed a detailed structural and functional analysis of the Stc1 protein. Our analyses reveal that the conserved N-terminal region of Stc1 represents an unusual tandem zinc finger domain, with similarities to common LIM domains but distinguished by a lack of preferred relative orientation of the two zinc fingers. We demonstrate that this tandem zinc finger domain is involved in binding Ago1, whereas the nonconserved C-terminal region mediates association with CLRC. These findings elucidate the molecular basis for the coupling of RNAi to chromatin modification in fission yeast.


Asunto(s)
Proteínas Nucleares/química , Schizosaccharomyces/química , Proteínas Argonautas/química , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , ARN de Hongos/química , ARN de Hongos/genética , ARN de Hongos/metabolismo , ARN Interferente Pequeño/química , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/fisiología , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Relación Estructura-Actividad , Dedos de Zinc
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA