Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Vet Res ; 55(1): 126, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39350238

RESUMEN

Long-chain fatty acid transport protein 1 (FATP1) is a member of the fatty acid transporter family. It facilitates transmembrane transport of fatty acids and participates in lipid metabolism. Lipids are essential components of the cell and organelle membranes of Trichinella spiralis. The nematode has lost the capacity to synthesise the necessary lipids de novo and has instead evolved to obtain fatty acids and their derivatives from its host. This study aims to ascertain the primary biological characteristics and roles of T. spiralis FATP1 (TsFATP1) in lipid metabolism, larval moulting, and the development of this nematode. The results show that TsFATP1 is highly expressed at enteral T. spiralis stages, mainly localised at the cuticle, the stichosome and the intrauterine embryos of the parasite. The silencing of the TsFATP1 gene by TsFATP1-specific dsRNA significantly decreases the expression levels of TsFATP1 in the worm. It reduces the contents of ATP, triglycerides, total cholesterol, and phospholipids both in vitro and in vivo. RNAi inhibits lipid metabolism, moulting, and the growth of this nematode. The results demonstrate that TsFATP1 plays an essential role in lipid metabolism, moulting, and the development of T. spiralis. It could also be a target candidate for the anti-Trichinella vaccine and drugs.


Asunto(s)
Proteínas de Transporte de Ácidos Grasos , Proteínas del Helminto , Larva , Metabolismo de los Lípidos , Trichinella spiralis , Animales , Trichinella spiralis/genética , Trichinella spiralis/fisiología , Trichinella spiralis/metabolismo , Trichinella spiralis/crecimiento & desarrollo , Proteínas de Transporte de Ácidos Grasos/metabolismo , Proteínas de Transporte de Ácidos Grasos/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , Proteínas del Helminto/metabolismo , Proteínas del Helminto/genética , Muda/fisiología , Ratones , Femenino , Triquinelosis/parasitología , Triquinelosis/veterinaria
2.
Int J Mol Sci ; 22(18)2021 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-34576028

RESUMEN

Lung cancer is one of the most common cancers and the leading cause of death in humans worldwide. Non-small-cell lung cancer (NSCLC) accounts for approximately 85% of lung cancer cases and is often diagnosed at a late stage. Among patients with NSCLC, 50% die within 1 year after diagnosis. Even with clinical intervention, the 5-year survival rate is only approximately 20%. Therefore, the development of an advanced therapeutic strategy or novel agent is urgently required for treating NSCLC. Berberine exerts therapeutic activity toward NSCLC; therefore, its activity as an antitumor agent needs to be explored further. In this study, three terpenylated-bromide derivatives of berberrubine were synthesized and their anti-NSCLC activities were evaluated. Each derivative had higher anti-NSCLCs activity than berberrubine and berberine. Among them, 9-O-gernylberberrubine bromide (B4) and 9-O-farnesylberberrubine bromide (B5) showed greater growth inhibition, cell-cycle regulation, in vitro tumorigenesis suppression, and tumor migration reduction. In addition, some degree of apoptosis and autophagic flux blocking was noted in the cells under B4 and B5 treatments. Our study demonstrates that the berberrubine derivatives, B4 and B5, exhibit impressive anti-NSCLC activities and have potential for use as chemotherapeutic agents against NSCLC.


Asunto(s)
Berberina/análogos & derivados , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células A549 , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Berberina/síntesis química , Berberina/química , Berberina/farmacología , Bromuros/química , Carcinogénesis/efectos de los fármacos , Carcinoma de Pulmón de Células no Pequeñas/patología , Humanos , Terpenos/síntesis química , Terpenos/farmacología
3.
Molecules ; 26(5)2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33668690

RESUMEN

The Mongolian rhubarb-Rheum undulatum L. (RU)-and Rumex crispus L. (RC)-a Taiwanese local rhubarb belonging to the family of Polygonaceae-are principal therapeutic materials in integrative medicine due to their rich quantities of bioactive compounds; however, their phytochemical and antioxidant properties, and anti-cancer activity is poorly investigated. Furthermore, the phytochemical characteristics of both species may be affected by their different geographical distribution and climatic variance. The current study aimed to compare RU with RC extracts in different polarity solvents (n-hexane, ethyl acetate, acetone, ethanol, and water) for their phytochemical contents including the total phenolic content (TPC), total anthraquinone content (TAC), total flavonoid content (TFC), antioxidant and free radical scavenging capacities, and anticancer ability on the HepG2 cell. Except for the n-hexane extract, all of the RU extracts had considerably higher TPCs than RC extracts, ranging from 8.39 to 11.16 mg gallic acid equivalent (GAE) per gram of dry weight, and the TPCs of each extract were also significantly correlated with their antioxidant capacities by ABTS, DPPH, and FRAP assays (p < 0.05). Moreover, there was no remarkable association between the antioxidant capacities and either TACs or TFCs in both the RU and RC extracts. Besides, high-performance liquid chromatography (HPLC) analysis revealed that both the RU and RC extracts contained chrysophanol, emodin, and physcion, and those bioactive compounds were relatively higher in the n-hexane solvent extracts. Additionally, we observed different levels of dose-dependent cytotoxic effects in all the extracts by cell viability assay. Notably, the ethanol extract of RU had a compelling cytotoxic effect with the lowest half-maximum inhibition concentration (IC50-171.94 ± 6.56 µg/mL at 48 h) among the RU extracts than the ethanol extract of RC. Interestingly, the ethanol extract of RU but not RC significantly induced apoptosis in the human liver cancer cell line, HepG2, with a distinct pattern in caspase-3 activation, resulting in increased PARP cleavage and DNA damage. In summary, Mongolian Rhubarb, RU, showed more phytochemical contents, as well as a higher antioxidant capacity and apoptotic effect to HepG2 than RC; thus, it can be exploited for the proper source of natural antioxidants and liver cancer treatment in further investigation.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Antioxidantes/farmacología , Fitoquímicos/farmacología , Extractos Vegetales/farmacología , Rheum/química , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Benzotiazoles/antagonistas & inhibidores , Compuestos de Bifenilo/antagonistas & inhibidores , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Células Hep G2 , Humanos , Mongolia , Fitoquímicos/química , Fitoquímicos/aislamiento & purificación , Picratos/antagonistas & inhibidores , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Relación Estructura-Actividad , Ácidos Sulfónicos/antagonistas & inhibidores , Taiwán , Células Tumorales Cultivadas
4.
Int J Mol Sci ; 21(12)2020 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-32545770

RESUMEN

Lung cancer is the leading cause of death in the world, and the most common type of lung cancer is non-small-cell lung cancer (NSCLC), accounting for 85% of lung cancer. Patients with NSCLC, when detected, are mostly in a metastatic stage, and over half of patients diagnosed with NSCLC die within one year after diagnosis; the 5-year survival rate is 24%. However, in patients with metastatic NSCLC, the 5-year survival rate is 6%. Therefore, development of a new therapeutic agent or strategy is urgent for NSCLCs. Berberine has been illustrated to be a therapeutic agent of NSCLC. In the present study, we synthesized six derivatives of berberine, and the anti-NSCLC activity of these agents was examined. Some of them exert increasing proliferation inhibition comparing with berberine. Further studies demonstrated that two of the most effective agents, 9-O-decylberberrubine bromide (B6) and 9-O-dodecylberberrubine bromide (B7), performed cell cycle regulation, in-vitro tumorigenesis inhibition and autophagic flux blocking, but not induction of cellular apoptosis in NSCLC cells. Moreover, B6 and B7 were determined to be green fluorescent and could be penetrated and localized in cellular mitochondria. Herein, B6 and B7, the berberine derivatives we synthesized, revealed better anti-NSCLC activity with berberine and may be used as therapeutic candidates for the treatment of NSCLCs.


Asunto(s)
Antineoplásicos/síntesis química , Berberina/análogos & derivados , Bromuros/síntesis química , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/metabolismo , Células A549 , Antineoplásicos/química , Antineoplásicos/farmacología , Bromuros/química , Bromuros/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Estructura Molecular
5.
Molecules ; 25(3)2020 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-32033326

RESUMEN

The objective of this study was to synthesize the 9-/13-position substituted berberine derivatives and evaluate their cytotoxic and photocytotoxic effects against three human cancer cell lines. Among all the synthesized compounds, 9-O-dodecyl- (5e), 13-dodecyl- (6e), and 13-O-dodecyl-berberine (7e) exhibited stronger growth inhibition against three human cancer cell lines, (HepG2, HT-29 and BFTC905), in comparison with structurally related berberine (1). These three compounds also showed the photocytotoxicity in human cancer cells in a concentration-dependent and light dose-dependent manner. Through flow cytometry analysis, we found out a lipophilic group at the 9-/13-position of berberine may have facilitated its penetration into test cells and hence enhanced its photocytotoxicity on the human liver cancer cell HepG2. Further, in cell cycle analysis, 5e, 6e, and 7e induced HepG2 cells to arrest at the S phase and caused apoptosis upon irradiation. In addition, photodynamic treatment of berberine derivatives 5e, 6e, and 7e again showed a significant photocytotoxic effects on HepG2 cells, induced remarkable cell apoptosis, greatly increased intracellular ROS level, and the loss of mitochondrial membrane potential. These results over and again confirmed that berberine derivatives 5e, 6e, and 7e greatly enhanced photocytotoxicity. Taken together, the test data led us to conclude that berberine derivatives with a dodecyl group at the 9-/13-position could be great candidates for the anti-liver cancer medicines developments.


Asunto(s)
Antineoplásicos/farmacología , Berberina , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Antineoplásicos/síntesis química , Apoptosis/efectos de los fármacos , Berberina/análogos & derivados , Berberina/síntesis química , Berberina/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células HT29 , Células Hep G2 , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Puntos de Control de la Fase S del Ciclo Celular/efectos de los fármacos
6.
Molecules ; 24(2)2019 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-30669614

RESUMEN

The fruit and hulls of the water caltrop (Trapa taiwanensis Nakai) are used as hepatoprotective herbal tea ingredients in Taiwan. The stability of hydrolysable tannins in herbal drinks has rarely been reported. In the present study, two hydrolysable tannins, tellimagrandin II (TGII) and 1,2,3,4,6-pentagalloylglucopyranose (PGG), were isolated from water caltrop hulls. The stability of the two compounds was evaluated by treatment with various pH buffer solutions, simulated gastric fluid and intestinal fluid, different temperatures, and photo-irradiation at 352 nm in different solvents. Results showed that TGII and PGG were more stable in a pH 2.0 buffer solution (with 91.88% remaining) and in a water solution with 352 nm irradiation (with 95% remaining). TGII and PGG were more stable in methanol or ethanol solutions (with >93.69% remaining) than in an aqueous solution (with <43.52% remaining) at 100 °C. In simulated gastric fluid, more than 96% of the hydrolysable tannins remained after incubation at 37 °C for 4 h. However, these hydrolysable tannins were unstable in simulated intestinal fluid, as after incubation at 37 °C for 9 h, the content of TGII had decreased to 31.40% and of PGG to 12.46%. The synthetic antioxidants, butyl hydroxy anisole (BHA), di-butyl hydroxy toluene (BHT), and propyl gallate, did not exhibit photoprotective effects on these hydrolysable tannins. However, catechin, a natural antioxidant, displayed a weak photoprotective effect. Ascorbic acid had a short-term thermal-protective effect but not a long-term protective effect. The different stability properties of hydrolysable tannins in solutions can be used in the development of related herbal teas in the future.


Asunto(s)
Taninos Hidrolizables/química , Extractos Vegetales/química , Antioxidantes/farmacología , Ácido Ascórbico/química , Concentración de Iones de Hidrógeno , Taninos Hidrolizables/aislamiento & purificación , Estructura Molecular , Procesos Fotoquímicos , Extractos Vegetales/aislamiento & purificación , Sustancias Protectoras/química , Sustancias Protectoras/farmacología , Soluciones , Termodinámica
7.
Pharmacol Res ; 115: 288-298, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27940017

RESUMEN

Thyroid cancer is the most common endocrine malignancy, the global incidence rate of which is rapidly rising. Surgery and radioiodine therapies are common and effective treatments only for nonmetastasized primary tumors. Therefore, effective treatment modalities are imperative for patients with radioiodine-resistant thyroid cancer. Honokiol, a biophenolic compound derived from Magnolia spp., has been shown have diverse biological and pharmacological activities, including anti-inflammatory, antioxidative, antiangiogenic, and anticancer properties. In the present study, three human thyroid cancer cell lines, namely anaplastic, follicular, and poorly differentiated thyroid cancer cells, were used to evaluate the chemotherapeutic activity of honokiol. Cell viability, cell cycle, apoptosis, and autophagy induction were determined through flow cytometry and western blot analysis. We found that honokiol treatment can suppress cell growth, induce cell cycle arrest, and enhance the induction of caspase-dependent apoptosis and autophagy in cancer cells. Moreover, honokiol treatment modulated signaling pathways including Akt/mTOR, ERK, JNK, and p38 in the studied cells. In addition, the antitumorigenic activity of honokiol was also confirmed in vitro and in vivo. Our data provide evidence that honokiol has a unique application in chemotherapy for human thyroid cancers.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Compuestos de Bifenilo/farmacología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Lignanos/farmacología , Neoplasias de la Tiroides/tratamiento farmacológico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Humanos , Transducción de Señal/efectos de los fármacos
8.
Anticancer Drugs ; 26(10): 1034-42, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26288134

RESUMEN

This study investigated the anticancer effects of N-farnesyloxy-norcantharimide (NOC15), a newly synthesized norcantharidin (NCTD) analogue, on human leukemic Jurkat T cells and the signaling pathway underlying its effects. We found that the half maximal inhibitory concentration (IC50) of NOC15 on Jurkat T cells is 1.4 µmol/l, which is 11.14-fold (=15.6÷1.4) smaller than the 15.6 µmol/l of NCTD on Jurkat T cells, whereas the IC50 of NOC15 on human normal lymphoblast (HNL) is 207.9 µmol/l, which is 8.17-fold (=1698.0÷207.8) smaller than the 1698.0 µmol/l of NCTD on HNL cells. These results indicated that NOC15 exerts a higher anticancer effect on Jurkat T cells and has higher toxicity toward HNL cells than NCTD. Thus, NOC15 is 1.36-fold (=11.14÷8.17) beneficial as an anticancer agent toward Jurkat T cells compared with NCTD. Moreover, NOC15 can increase the percentage of cells in the sub-G1 phase and reduce the cell viability of Jurkat T cells, stimulate p38 and extracellular signal-regulated protein kinase 1/2 (ERK1/2) of mitogen-activated protein kinases (MAPKs) signaling pathway, and inhibit calcineurin expression and interleukin-2 (IL-2) production. However, NOC15 exerted no effects on the Jun-N-terminal kinase 1/2 (JNK1/2) signaling pathway, the production of IL-8, and tumor necrosis factor-α. We conclude that the anticancer activity of the newly synthesized NOC15 is 1.36-fold beneficial than NCTD as an anticancer agent and that NOC15 can increase the percentage of cells in the sub-G1 phase through the stimulation of p38 and ERK1/2 of the MAPK signaling pathway and the inhibition of calcineurin expression and IL-2 production. The NOC15 may have the potential of being developed into an anticancer agent in the future.


Asunto(s)
Antineoplásicos/farmacología , Cantaridina/análogos & derivados , Interleucina-2/biosíntesis , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Calcineurina/metabolismo , Cantaridina/farmacología , Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Humanos , Interleucina-8/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Células Jurkat , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
9.
Anticancer Drugs ; 26(5): 508-17, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25588161

RESUMEN

This study investigated the anticancer effects of two newly synthesized norcantharidin analogs, N-farnesyloxy-norcantharimide (NOC15) and N-farnesyl-norcantharimide (NC15), in L1210 cells and in a syngeneic mouse leukemia model (L1210 cell line plus DBA/2 mice). We found that the half-maximal inhibitory concentration (IC50) of NOC15 and NC15 on L1210 cells is 1.56 and 2.62 µmol/l, respectively, and that the IC50 of NOC15 and NC15 on human normal lymphoblast is 207.9 and 2569 µmol/l, respectively. In cell cycle analysis, NOC15 could increase the sub-G1 phase, whereas NC15 could induce G2/M arrest. Annexin-V apoptosis assay indicated that both NOC15 and NC15 could induce cell apoptosis. In the syngeneic mouse leukemia model, both NOC15 and NC15 could increase the survival days of mice and decrease the tumor weight. Moreover, both NOC15 and NC15 could retard the increase in peripheral blood leukocyte count due to L1210 cells. In the subcutaneous (s.c.) group, the treatment with NOC15 could retard the decrease in the weight of the liver and the spleen caused by L1210 cells, whereas the treatment with NC15 could retard the decrease in the weight of the spleen caused by L1210 cells. We conclude that the new compounds NOC15 and NC15 have strong anticancer activity and low toxicity both in vitro and in vivo. NOC15 and NC15 may have the potential to be developed into anticancer agents in the future.


Asunto(s)
Antineoplásicos/uso terapéutico , Cantaridina/análogos & derivados , Leucemia L1210/tratamiento farmacológico , Animales , Anexina A5/metabolismo , Antineoplásicos/toxicidad , Apoptosis/efectos de los fármacos , Cantaridina/uso terapéutico , Cantaridina/toxicidad , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Leucemia L1210/mortalidad , Leucemia L1210/patología , Ratones Endogámicos DBA
10.
Molecules ; 20(7): 11994-2015, 2015 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-26133763

RESUMEN

To examine the effect of hydrophobicity on the anticancer activity of 1,4-naphthoquinone derivatives, a series of compounds bearing a 2-O-alkyl-, 3-C-alkyl- or 2/3-N-morpholinoalkyl group were synthesized and evaluated for their anticancer activity against five human cancer cell lines in vitro. The cytotoxicity of these derivatives was assayed against HT-29, SW480, HepG2, MCF-7 and HL-60 cells by the MTT assay. Among them, 2-hydroxy-3-farnesyl-1,4-naphthoquinone (11a) was found to be the most cytotoxic against these cell lines. Our results showed that the effectiveness of compound 11a may be attributed to its suppression of the survival of HT-29. Secondly, in the Hoechst 33258 staining test, compound 11a-treated cells exhibited nuclear condensation typical of apoptosis. Additionally, cell cycle analysis by flow cytometry indicated that compound 11a arrested HT-29 cells in the S phase. Furthermore, cell death detected by Annexin V-FITC/propidium iodide staining showed that compound 11a efficiently induced apoptosis of HT-29 in a concentration-dependent manner. Taken together, compound 11a effectively inhibits colon cancer cell proliferation and may be a potent anticancer agent.


Asunto(s)
Lípidos/química , Naftoquinonas/síntesis química , Naftoquinonas/farmacología , Neoplasias/patología , Ciclo Celular , Línea Celular Tumoral , Citometría de Flujo , Humanos , Naftoquinonas/química
11.
Molecules ; 19(6): 6911-28, 2014 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-24865603

RESUMEN

This research attempted to study the effect of lipophilicity on the anticancer activity of N-substituted norcantharimide derivatives. Twenty-three compounds were synthesized and their cytotoxicities against five human cancer cell lines studied. The lipophilicity of each derivative was altered by its substituent, an alkyl, alkyloxy, terpenyl or terpenyloxy group at the N-position of norcantharimide. Further, among all synthesized derivatives studied, the compounds N-farnesyloxy-7-oxabicyclo[2.2.1]heptane-2,3-dicarboximide (9), and N-farnesyl-7-oxabicyclo[2.2.1]heptane-2,3-dicarboximide (18), have shown the highest cytotoxicity, anti-proliferative and apoptotic effect against human liver carcinoma HepG2 cell lines, yet displayed no significant cytotoxic effect on normal murine embryonic liver BNL CL.2 cells. Their overall performance led us to believe that these two compounds might be potential candidates for anticancer drugs development.


Asunto(s)
Antineoplásicos/síntesis química , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Células Hep G2 , Humanos , Ratones
12.
Artículo en Zh | MEDLINE | ID: mdl-25065205

RESUMEN

Hemocytes were collected from Oncomelania hupensis in Junshan, Hunan Province and Puge, Sichuan Province, respectively, and stained with Giemsa solution for light microscopic examination. The cells were classified morphologically. Five types of hemocytes were identified, viz., large acidophilic hyalinocytes, small acidophilic hyalinocytes, basophilic hyalinocytes, basophilic small granulocytes and basophilic large granulocytes. The proportion of small acidophilic hyalinocytes was the most abundant hemocyte [36.7% (229/624) in snails from Junshan and 31.7% (257/810) in snails from Puge], followed by basophilic hyalinocyte [23.1% (144/624) in Junshan and 24.4% (198/810) in Puge]. Basophilic large granulocyte was about 9.3% (58/624) in Junshan and 11.6% (94/810) in Puge. The length of large acidophilic hyalinocytes was the maximum and its nucleocytoplasmic ratio was minimum, followed by small acidophilic hyalinocytes. The length of basophilic cells was shorter and its nucleocytoplasmic ratio was smaller than those of acidophilic cells. There was no significant difference in cellular constituents of hemocytes and the morphological features of hyalinocytes between the snails from Junshan and Puge, while the length and nucleocytoplasmic ratio of granulocytes in Junshan snails were smaller than those of Puge ones.


Asunto(s)
Hemocitos/citología , Animales , Forma de la Célula , Microscopía , Caracoles
13.
Int J Biol Macromol ; 280(Pt 4): 135958, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39322156

RESUMEN

C-type lectin (CTL) plays a vital role in parasite adhesion, invading host's cells and immune escape. The objective of this research was to explore whether recombinant T. spiralis CTL (rTsCTL) binding with syndecan-1 damages intestine epithelial integrity and mediates T. spiralis intrusion in mice. The results showed that rTsCTL interacted with syndecan-1 and activated STAT3 pathway in gut epithelium, decreased tight junctions (TJs) expressions and damaged gut epithelium integrity, promoted T. spiralis intrusion, and increased expression level of inflammatory cytokine and mucin. The syndecan-1 inhibitor (ß-xyloside) and STAT3 phosphorylation inhibitor (Stattic) significantly suppressed syndecan-1 expression and STAT3 pathway activation, reduced the expression levels of TJs, pro-inflammatory cytokines (TNF-α and IL-1ß), Muc2 and Muc5ac, and declined intestinal permeability in T. spiralis-infected mice. These results revealed that the inhibitors suppressed T. spiralis invasion and development in gut mucosa, decreased intestinal adult burdens and relieved gut inflammation. These findings further testified that the in vivo binding of TsCTL with syndecan-1 destroyed enteral mucosal epithelial integrity and promoted T. spiralis intrusion of gut mucosa via activating STAT3 pathway and decreasing TJs expression. TsCTL could be deemed as a promising vaccine target to interrupt T. spiralis infection.

14.
Bioorg Med Chem Lett ; 23(1): 305-9, 2013 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23182088

RESUMEN

To alter its hydrophobicity, a series of compounds bearing 9-O-alkyl- or 9-O-terpenyl- substituted berberine were synthesized and evaluated for anticancer activity against human cancer HepG2 and HT29 cell lines. We found that the lipophilic substitute of 9-O-alkyl- and 9-O-terpenyl berberine derivatives plays a role in inhibiting the human cancer cell growth and its activity could be maximized with the optimized substitute type and chain length. Most strikingly, nonetheless, of the six compounds prepared, sample 8, a farnesyl 9-O-substituted berberine, showed either comparable or better cytotoxic activity against human cancer HepG2 cell line than that of berberine. Compound 8 had also shown a 104-fold antiproliferation activity in compare with berberine against human hepatoma HepG2 cell lines after 48 incubation hours. Further, in Hoechst 33258 and annexin V-FITC/PI staining analyses it induced apoptosis in HepG2 cells at lower concentration than that of berberine for 24h. Take all; farnesyl 9-O-substituted berberine could be a potential candidate for new anticancer drug development.


Asunto(s)
Antineoplásicos/síntesis química , Berberina/análogos & derivados , Berberina/química , Antineoplásicos/química , Antineoplásicos/toxicidad , Berberina/síntesis química , Berberina/toxicidad , Proliferación Celular/efectos de los fármacos , Células HT29 , Células Hep G2 , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Relación Estructura-Actividad
15.
Artículo en Inglés | MEDLINE | ID: mdl-37706115

RESUMEN

Background: Ellagic acid is a natural polyphenol compound found in pomegranates, walnuts, and many berries. It is not easily absorbed, but it could be metabolized to urolithins by the gut microbiota. Urolithin A, one of the ellagic acid metabolites, has been proved to prolong the lifespan of C. elegans and increases muscle function of mice. The purpose of this current study was to analyze the absorption and metabolites of urolithin A and ellagic acid in mice and the anticancer effects of urolithin A, urolithin B, and ellagic acid in colorectal cancer cells. Methods: Urolithin A and urolithin B were synthesized and analyzed by HPLC and NMR. A pharmacokinetic study of urolithin A was performed in mice by analyzing urolithin A and its metabolites in urines. Absorption and biotransformation of ellagic acid were also studied in mice by analyzing the plasma, liver, and feces. The cytotoxicity of urolithin A, urolithin B, and ellagic acid was assayed in SW480, SW620, HCT 116, and HT-29 cells. Results: Urolithin A and urolithin B were synthesized and purified to reach 98.1% and 99% purity, respectively, and the structures were identified by NMR. In urolithin A intake analysis, urolithin A was only detectable at 3 h, not at 6-24 h; it suggested that urolithin A was rapidly metabolized to some unknown metabolites. Using UPLC-MS/MS analysis, the metabolites might be urolithin A 3-O-glucuronide, urolithin A 3-sulfate, and urolithin A-sulfate glucuronide. After feeding mice with ellagic acid for consecutive 14 days, ellagic acid contents could be detected in the fecal samples, but not in plasma and liver, and urolithin A was not detected in all samples. It suggests that ellagic acid is not easily absorbed and that the biotransformation of ellagic acid to urolithin A by intestinal flora might be very low. From the cytotoxicity assay, it was found that there was anticancer effect in urolithin A and urolithin B but not in ellagic acid. In contrast, ellagic acid promoted the proliferation of SW480 and SW620 cells.

16.
Transl Psychiatry ; 13(1): 167, 2023 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-37173343

RESUMEN

Impulsivity is a multidimensional heritable phenotype that broadly refers to the tendency to act prematurely and is associated with multiple forms of psychopathology, including substance use disorders. We performed genome-wide association studies (GWAS) of eight impulsive personality traits from the Barratt Impulsiveness Scale and the short UPPS-P Impulsive Personality Scale (N = 123,509-133,517 23andMe research participants of European ancestry), and a measure of Drug Experimentation (N = 130,684). Because these GWAS implicated the gene CADM2, we next performed single-SNP phenome-wide studies (PheWAS) of several of the implicated variants in CADM2 in a multi-ancestral 23andMe cohort (N = 3,229,317, European; N = 579,623, Latin American; N = 199,663, African American). Finally, we produced Cadm2 mutant mice and used them to perform a Mouse-PheWAS ("MouseWAS") by testing them with a battery of relevant behavioral tasks. In humans, impulsive personality traits showed modest chip-heritability (~6-11%), and moderate genetic correlations (rg = 0.20-0.50) with other personality traits, and various psychiatric and medical traits. We identified significant associations proximal to genes such as TCF4 and PTPRF, and also identified nominal associations proximal to DRD2 and CRHR1. PheWAS for CADM2 variants identified associations with 378 traits in European participants, and 47 traits in Latin American participants, replicating associations with risky behaviors, cognition and BMI, and revealing novel associations including allergies, anxiety, irritable bowel syndrome, and migraine. Our MouseWAS recapitulated some of the associations found in humans, including impulsivity, cognition, and BMI. Our results further delineate the role of CADM2 in impulsivity and numerous other psychiatric and somatic traits across ancestries and species.


Asunto(s)
Estudio de Asociación del Genoma Completo , Trastornos Relacionados con Sustancias , Humanos , Animales , Ratones , Fenotipo , Conducta Impulsiva , Personalidad/genética , Polimorfismo de Nucleótido Simple , Moléculas de Adhesión Celular/genética
17.
Life (Basel) ; 12(12)2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36556482

RESUMEN

Wogonin, one of the exceptional bioactive flavonoids found abundant in the roots of Huang-Qin (Scutellaria baicalensis Georgi), is a popular health-preserving Chinese medicine. The therapeutic applications can be expanded by improving its bioavailability. The 7-O-terpenylated wogonin consisting one to three prenyl units are chemically synthesized for increasing lipophilic nature for efficient uptake, and also an attempt in mimicry of naturally scarce terpenylated flavonoids found in limited plant families and bee propolis. Wogonin (W) and its lipophilic nature prenyl wogonin (W5), geranyl wogonin (W10), and farnesyl wogonin (W15) were comparatively studied with structure-relationship in immunotoxicity of cell livability on lymphoid, myeloid, and somatic origins cell lines. Anti-inflammatory functions characterized with nitric oxide inhibition and intracellular ROS level of LPS-activated murine macrophage RAW264.7 were assessed. Wogonin and its terpenylated derivatives have selectively influenced livability of lymphoid origin cells but not myeloid and somatic origin cells. The mitotic protein survivin gene expressions analysis further supported the selective suppressions on lymphoid origin YAC-1 cells by wogonin and geranyl wogonin, while oppositely boosted survivin expressions in LPS-activated macrophages. Moreover, wogonin exhibits dose-dependent inhibition on the nitric oxide (NO) production and iNOS gene expressions of LPS-activated RAW264.7 cells. Terpenylated wogonin exhibits profoundly superior control in intracellular ROS level and a sustained action with sound cell integrity than the wogonin. The enhanced cellular uptake with higher lipophilicity to membrane of 7-O-terpenylated wogonin may pose an important biological nature in facilitating better bioavailability and specific immunomodulatory actions of the category of terpenylated flavonoids. The 7-O-terpenylated wogonin having biological merit of fast membrane lipid bilayer integration, lower effective concentration, and better preserving immune cells functions and livability deserved further in-depth investigations and their broadly therapeutic applications.

18.
Biomed Pharmacother ; 151: 113102, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35594716

RESUMEN

Glutathione S-transferases (GSTs) belong to one class of phase 2 detoxification enzymes which are important in metabolism and/or detoxification of various electrophilic endogenous metabolites and xenobiotics. From the available database, we found that GSTM2 gene expression is lower in high stages of bladder urothelial carcinoma than in stage 1 and normal bladder tissue. GSTM2 overexpression retards invasion, migration and tumor sphere formation of bladder cancer cells. Analysis of GSTM2 promoter activity shows that one SP1 site located at - 48 to - 40 bp is important for GSTM2 gene expression in BFTC 905 cells. An SP1 inhibitor, mithramycin A, inhibits GSTM2 promoter activity and protein expression. SP1 overexpression also increases GSTM2 expression in BFTC 905 and 5637 cells. Eight potential phytochemicals were analyzed for GSTM2 promoter activation, and results indicated that baicalein, berberrubine, chalcone, curcumin, resveratrol, and wogonin can increase promoter activity. In endogenous GSTM2 expression, berberrubine and resveratrol activated GSTM2 mRNA and protein expression the most. A DNA methylation inhibitor, 5-aza-deoxycytidine, can decrease GSTM2 gene methylation level and then increase its gene expression; 50 µM berberrubine decreased the GSTM2 gene methylation level, providing a mechanism for activating GSTM2 gene expression. Berberrubine and resveratrol also increased SP1 protein expression as one of the mechanisms for GSTM2 gene expression. In summary, berberrubine and resveratrol activates GSTM2 expression which inhibits cell proliferation, migration, and invasion of bladder cancer cells. The GSTM2 expression mechanism is partially via SP1 activation, and the effect of berberrubine is also partly via DNA CpG demethylation.


Asunto(s)
Carcinoma de Células Transicionales , Glutatión Transferasa , Neoplasias de la Vejiga Urinaria , Carcinoma de Células Transicionales/tratamiento farmacológico , Carcinoma de Células Transicionales/genética , Carcinoma de Células Transicionales/metabolismo , Metilación de ADN , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo , Humanos , Fitoquímicos/metabolismo , Fitoquímicos/farmacología , Resveratrol , Factor de Transcripción Sp1/genética , Factor de Transcripción Sp1/metabolismo , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/metabolismo
19.
J Nutr Biochem ; 107: 109067, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35609851

RESUMEN

Cancer stem cells (CSCs) play a key role in cancer initiation, development, metastasis, and recurrence. Previously, we found that sulforaphane (SFN), a natural compound obtained from cruciferous vegetables, inhibited colorectal CSCs via the downregulation of TAp63α. However, the role of ΔNp63α, another critical isoform of p63 which has been considered to contribute to cancer progression, in SFN-mediated colorectal CSCs inhibition remains unclear. Here, we showed that ΔNp63α expression was enhanced in sphere-forming colorectal cancer cells. Overexpression of ΔNp63α promoted the properties of CSCs, while downregulation of ΔNp63α suppressed those properties. Besides, ΔNp63α was found to activate the transcription of core CSCs genes including Nanog, Oct4, and Sox2. Furthermore, in vitro and in vivo experiments illustrated the regulatory effects of SFN on ΔNp63α and colorectal CSCs. These findings suggested for the first time that ΔNp63α activated the transcription of Nanog, Oct4, Sox2 and mediated the interventional effects of SFN on colorectal CSCs, thus providing a novel mechanism by which SFN inhibits colorectal CSCs.


Asunto(s)
Neoplasias Colorrectales , Células Madre Neoplásicas , Línea Celular Tumoral , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Humanos , Isotiocianatos/farmacología , Proteína Homeótica Nanog/genética , Proteína Homeótica Nanog/metabolismo , Células Madre Neoplásicas/metabolismo , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Factores de Transcripción SOXB1/farmacología , Sulfóxidos/farmacología
20.
Artículo en Inglés | MEDLINE | ID: mdl-21792367

RESUMEN

Calvatia lilacina (CL), Pleurotus ostreatus (PO) and Volvariella volvacea (VV) are widely distributed worldwide and commonly eaten as mushrooms. In this study, cell viabilities were evaluated for a human colorectal adenocarcinoma cell line (SW480 cells) and a human monocytic leukemia cell line (THP-1 cells). Apoptotic mechanisms induced by the protein extracts of PO and VV were evaluated for SW480 cells. The viabilities of THP-1 and SW480 cells decreased in a concentration-dependent manner after 24 h of treatment with the protein extracts of CL, PO or VV. Apoptosis analysis revealed that the percentage of SW480 cells in the SubG(1) phase (a marker of apoptosis) was increased upon PO and VV protein-extract treatments, indicating that oligonucleosomal DNA fragmentation existed concomitantly with cellular death. The PO and VV protein extracts induced reactive oxygen species (ROS) production, glutathione (GSH) depletion and mitochondrial transmembrane potential (ΔΨ(m)) loss in SW480 cells. Pretreatment with N-acetylcysteine, GSH or cyclosporine A partially prevented the apoptosis induced by PO protein extracts, but not that induced by VV extracts, in SW480 cells. The protein extracts of CL, PO and VV exhibited therapeutic efficacy against human colorectal adenocarcinoma cells and human monocytic leukemia cells. The PO protein extracts induced apoptosis in SW480 cells partially through ROS production, GSH depletion and mitochondrial dysfunction. Therefore, the protein extracts of these mushrooms could be considered an important source of new anti-cancer drugs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA