Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Adv Biol (Weinh) ; 8(6): e2400119, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38684453

RESUMEN

The lungs are the largest surface of the body and the most important organ in the respiratory system, which are constantly exposed to the external environment. Tissue Resident Macrophages in lung constitutes the important defense against external pathogens. Macrophages connects the innate and adaptive immune system, and also plays important roles in carcinogenesis and cancer immunotherapy. Lung cancer is the leading cause of cancer-related death worldwide, with an overall five-year survival rate of only 21%. Macrophages that infiltrate or aggregate in lung tumor microenvironment are defined as tumor-associated macrophages (TAMs). TAMs are the main components of immune cells in the lung tumor microenvironment. The differentiation and maturation process of TAMs can be roughly divided into two different types: classical activation pathway produces M1 tumor-associated macrophages, and bypass activation pathway produces M2 tumor-associated macrophages. Studies have found that TAMs are related to tumor invasion, metastasis, and treatment resistance, and show potential as a new target for tumor immunotherapy. Therefore, the biological function of macrophages in lung and the role of TAMs in the occurrence, development, and treatment of lung cancer are discussed in this paper.


Asunto(s)
Inmunoterapia , Neoplasias Pulmonares , Microambiente Tumoral , Humanos , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/patología , Inmunoterapia/métodos , Microambiente Tumoral/inmunología , Macrófagos/inmunología , Macrófagos Asociados a Tumores/inmunología , Animales , Pulmón/inmunología , Pulmón/patología
2.
MedComm (2020) ; 5(7): e613, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38898995

RESUMEN

The DNA-dependent protein kinase (DNA-PK), catalytic subunit, also known as DNA-PKcs, is complexed with the heterodimer Ku70/Ku80 to form DNA-PK holoenzyme, which is well recognized as initiator in the nonhomologous end joining (NHEJ) repair after double strand break (DSB). During NHEJ, DNA-PKcs is essential for both DNA end processing and end joining. Besides its classical function in DSB repair, DNA-PKcs also shows multifaceted functions in various biological activities such as class switch recombination (CSR) and variable (V) diversity (D) joining (J) recombination in B/T lymphocytes development, innate immunity through cGAS-STING pathway, transcription, alternative splicing, and so on, which are dependent on its function in NHEJ or not. Moreover, DNA-PKcs deficiency has been proven to be related with human diseases such as neurological pathogenesis, cancer, immunological disorder, and so on through different mechanisms. Therefore, it is imperative to summarize the latest findings about DNA-PKcs and diseases for better targeting DNA-PKcs, which have shown efficacy in cancer treatment in preclinical models. Here, we discuss the multifaceted roles of DNA-PKcs in human diseases, meanwhile, we discuss the progresses of DNA-PKcs inhibitors and their potential in clinical trials. The most updated review about DNA-PKcs will hopefully provide insights and ideas to understand DNA-PKcs associated diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA