Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
J Phys Chem A ; 128(15): 2960-2970, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38576211

RESUMEN

In order to design effective extractants for uranium extraction from seawater, it is imperative to acquire a more comprehensive understanding of the bonding properties between the uranyl cation (UO22+) and various ligands. Therefore, we employed density functional theory to investigate the complexation reactions of UO22+ with 29 different monovalent anions (L-1), exploring both mono- and bidentate coordination. We proposed a novel concept called "uranyl affinity" (Eua) to facilitate the establishment of a standardized scale for assessing the ease or difficulty of coordination bond formation between UO22+ and diverse ligands. Furthermore, we conducted an in-depth investigation into the underlying mechanisms involved. During the process of uranyl complex [(UO2L)+] formation, lone pair electrons from the coordinating atom in L- are transferred to either the lowest unoccupied molecular degenerate orbitals 1ϕu or 1δu of the uranyl ion, which originate from the uranium atom's 5f unoccupied orbitals. In light of discussion concerning the mechanisms of coordination bond formation, quantitative structure-property relationship analyses were conducted to investigate the correlation between Eua and various structural descriptors associated with the 29 ligands under investigation. This analysis revealed distinct patterns in Eua values while identifying key influencing factors among the different ligands.

2.
J Chem Phys ; 160(7)2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38363999

RESUMEN

Short nanopores find extensive applications, capitalizing on their high throughput and detection resolution. Ionic behaviors through long nanopores are mainly determined by charged inner-pore walls. When pore lengths decrease to sub-200 nm, charged exterior surfaces provide considerable modulation to ion current. We find that the charge status of inner-pore walls affects the modulation of ion current from charged exterior surfaces. For 50-nm-long nanopores with neutral inner-pore walls, the charged exterior surfaces on the voltage (surfaceV) and ground (surfaceG) sides enhance and inhibit the ion transport by forming ion enrichment and depletion zones inside nanopores, respectively. For nanopores with both charged inner-pore and exterior surfaces, continuous electric double layers enhance the ion transport through nanopores significantly. The charged surfaceV results in higher ion current by simultaneously weakening the ion depletion at pore entrances and enhancing the intra-pore ion enrichment. The charged surfaceG expedites the exit of ions from nanopores, resulting in a decrease in ion enrichment at pore exits. Through adjustment in the width of charged-ring regions near pore boundaries, the effective charged width of the charged exterior is explored at ∼20 nm. Our results may provide a theoretical guide for further optimizing the performance of nanopore-based applications, such as seawater desalination, biosensing, and osmotic energy conversion.

3.
Phys Chem Chem Phys ; 21(12): 6643-6650, 2019 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-30855607

RESUMEN

A direct NO-releasing reaction of nitrite catalyzed by [N(afaCy)3Fe(OTf)]+ (afa (azafulvene-amine); OTf (trifluoromethanesulfonate); Cy (cyclohexyl)) was investigated using density functional theory (DFT) with D3 dispersion correction. The complex featured a secondary coordination sphere that facilitated the formation of the iron-oxo product [N(afaCy)3FeO]+ with three (Fe)OH-N hydrogen bonds. As a high-spin iron(ii), the O-binding initial intermediate Fe(O)-nitrito was thermodynamically favorable in the S = 2 state. The cleavage of the (Fe)O-NO bond was performed by a ß-electron shift to produce Fe(iii)-O by electron rearrangement in the S = 5/2 state. The different electron configurations are responsible for the structural properties, the valence of iron in the complexes, and the pathways of the reactions. Moreover, the two different H-bonds, (Fe)OH-N and (Fe)O-HN (by O-protonation), in the product complexes played a role in determining the reaction channels by impacting the N-H bond rotation. Thus, an exothermic sequence of conversions Fe(ii) → Fe(iii)-O → Fe(iii)-OH → Fe(iii)-O was established for the targeted product formation. This process provided a clue to build two key intermediates, iron-oxo and iron-hydroxo, in a variety of biological and synthetic systems. The results of this study are in agreement with experimental observations and describe the roles of H-bonding in nitrite reduction catalyzed by the non-heme iron complex.

4.
Analyst ; 143(22): 5481-5486, 2018 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-30289144

RESUMEN

Organic pollutants have attracted increasing attention due to their strong persistence and extensive diffusivity. Plasticizers (PAEs) and organophosphorus pesticides (OPs), as the vital part of organic pollutants, have made extensive damage to the environment with the rapid development of modern agriculture and industry. Therefore, we have, for the first time, carried out a quantitative analysis of the PAEs and OPs by fluorescence recognition. A series of isostructural lanthanide organic frameworks, [Ln(tftpa)1.5(2,2'-bpy)(H2O)] (Ln = Gd 1, Eu 2 and Tb 3, H2tftpa = tetrafluoroterephthalic acid), were hydrothermally synthesized, of which 3 exhibited excellent hydrolytic resistance to both boiling acidic and basic aqueous solutions. Moreover, luminescence investigations show that 3 can be used as a highly sensitive and recyclable luminescence sensor for the detection of DBP (di-n-butyl phthalate) in simulated seawater and chlorpyrifos in ethanol with the detection limits of 2.07 and 0.14 ppb, respectively.


Asunto(s)
Cloropirifos/análisis , Dibutil Ftalato/análisis , Colorantes Fluorescentes/química , Elementos de la Serie de los Lantanoides/química , Estructuras Metalorgánicas/química , Fluorescencia , Límite de Detección , Estructura Molecular , Plaguicidas/análisis , Plastificantes/análisis , Espectrometría de Fluorescencia/métodos
5.
Inorg Chem ; 57(13): 7503-7506, 2018 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-29882659

RESUMEN

A two-dimensional (2D) nonlinear-optical (NLO) material could generate a breakthrough in the development of a nanoscale laser, especially in the range of high-energy and short-wavelength deep ultraviolet (DUV; <200 nm). KBe2BO3F2 (KBBF) is the only bulk crystal actually used in the DUV region. In this letter, we designed the new 2D KBBF family monolayer Al3LiB2O6F4 (2D-ALBF), which was predicted to have a broad DUV-vis transparent range and an enhanced NLO effect that doubles the frequency. 2D-ALBF keeps the infinite planar [Be2BO3F2]∞ structure in KBBF but does not contain the toxic beryllium element.

6.
Phys Chem Chem Phys ; 19(23): 15120-15128, 2017 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-28569905

RESUMEN

It is still a challenge to design and synthesize high performance broader ultraviolet non-linear optical (NLO) materials. Two new transition-metal silicates have recently attracted a lot of attention due to their strong phase-matched second harmonic generation (SHG) responses (about 4.5 times higher than KDP). However, the electronic and optical properties underlying the high performance of these materials and consequently, the possibility of designing more efficient silicates for NLO applications are not presently clear. In this study, the geometrical structure and bonding character, electronic structure and optical properties of Li2M4[(TiO)Si4O12] (M = K+, Rb+) crystals have been systematically determined based on the density functional theory. Satisfactory agreement between the experimental and theoretical results indicates that the method and conditions used herein are favorable. A detailed analysis of the precise electronic structure and dipole moments of the two compounds suggests that it is the strong covalent character between Ti(Si) and O and the same orientation alignment of the dipole moment vector of the constituent asymmetric [TiO5]6- square pyramid anion units that result in the large SHG responses for the two compounds. In addition, the unavailable linear and non-linear optical experimental parameters, including dielectric function, optical absorption and birefringence, and all the components of the SHG coefficients are reported for the first time. This investigation unravels the structure-property relationships of titanosilicates and may be significant in terms of providing an efficient strategy towards designing more potential and competitive NLO materials.

7.
Phys Chem Chem Phys ; 18(2): 1050-8, 2016 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-26659558

RESUMEN

New metal-free carbon nanodot/carbon nitride (C3N4) nanocomposites have shown to exhibit high efficiency for photocatalytic solar water splitting. (J. Liu, et al., Science, 2015, 347, 970) However, the mechanism underlying the ultrahigh performance of these nanocomposites and consequently the possibilities for further improvements are not at present clear. In this work, we performed hybrid functional calculations and included long-range dispersion corrections to accurately characterize the interfacial electron coupling of the graphene quantum dot-graphitic carbon nitride composites (Gdot/g-C3N4). The results revealed that the band gap of Gdot/g-C3N4 could be engineered by changing the lateral size of Gdots. In particular, the C24H12/g-C3N4 composites present an ideal band gap of 1.92 eV to harvest a large part of solar light. More interestingly, a type-II heterojunction is formed at the interface of the Gdot/g-C3N4 composites, a desirable feature for enhanced photocatalytic activity. The charge redistribution at the interface leads to strong electron depletion above the Gdot sheet and electron accumulation below the g-C3N4 monolayer, potentially facilitating the separation of H2O oxidation and reduction reactions. Furthermore, we suggested that the photocatalytic performance of the Gdot/g-C3N4 nanocomposites can be further improved by decreasing the thickness of Gdots and tuning the size of Gdots.

8.
Phys Chem Chem Phys ; 18(4): 2784-91, 2016 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-26725777

RESUMEN

We examined the potential catalytic role of the palladium chloride catalyst in CO oxidation using density functional theory and experimental investigations. The active plane of the palladium chloride catalyst is identified as (140). We found that the defective PdCl2(140) surface is able to facilitate the activation of O2 and subsequently promote the oxidation of CO. The most significant reaction channel, the Eley-Rideal mechanism (MER1), proceeds first by a peroxo-type (OOCO) intermediate formation, second by O adsorption with the first CO2 release, then by the second CO attraction and the second CO2 formation, and finally by the second CO2 desorption and restoration of the defective PdCl2(140) surface. The rate-determining step is the formation of the second CO2 in the whole catalytic cycle. Compared to the previously reported catalytic systems, the reaction activation barrier (0.54 eV) of CO oxidation in the PdCl2 catalyst is low, indicating PdCl2 as a potential high-performance catalyst for CO oxidation. The present results enrich our understanding of CO oxidation of Pd-based catalysts and provide a basis for fabricating Pd-based catalysts with high activity.

9.
Phys Chem Chem Phys ; 17(48): 32140-8, 2015 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-26308732

RESUMEN

Considering the importance of palladium-based and doped metal-oxide catalysts in CO oxidation, we design a new Pd3O9@α-Al2O3 catalyst and simulate its efficiency under a hydroxylated effect. The structure, electronic structure and oxidation activity of the hydroxylated Pd3O9@α-Al2O3(0001) surface are investigated by density functional theory. Under the O-rich growth conditions, Pd preferentially replaces Al. The lowest formation energy of the Pd-doped α-Al2O3(0001) surface is 0.21 eV under conditions wherein the coverage of the Pd-doped α-Al2O3 is 0.75 on a pre-hydroxylated surface and the water coverage is 0.25, which leads to formation of a Pd3O9 cluster embedded in the Al2O3(0001) surface. The reaction mechanisms of CO oxidization have been elucidated first by CO adsorption and migration, second by O(v) formation with the first CO2 release, then by the first foreign O2 filling and CO co-adsorption, and finally by the second CO2 desorption and restoration of the hydroxylated Pd3O9@α-Al2O3(0001) surface. The rate-determining step is the formation of the first CO2 in the whole catalytic cycle. The results also indicate that the energy barrier for CO oxidization is obviously reduced compared to that of the undoped surface, which implies that the introduction of Pd can efficiently improve the oxidation reactivity of the α-Al2O3(0001) surface. Compared to the synthesized Ir1/FeO(x) (1.41 eV) and Pt1/FeO(x) (0.79 eV) catalysts, the reaction activation barrier of CO oxidation is lowered by 0.65 eV and 0.03 eV, respectively. Therefore, the Pd3O9@α-Al2O3 catalyst shows superior catalytic activity in CO oxidation. The present results enrich the understanding of the catalytic oxidation of CO by palladium-based catalysts and provide a clue for fabricating palladium-based catalysts with low cost and high activity.

10.
Phys Chem Chem Phys ; 17(44): 29844-53, 2015 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-26486877

RESUMEN

Thermoelectrics interconvert heat to electricity and are of great interest in waste heat recovery, solid-state cooling and so on. Here we assessed the potential of SnS2 and SnSe2 as thermoelectric materials at the temperature gradient from 300 to 800 K. Reflecting the crystal structure, the transport coefficients are highly anisotropic between a and c directions, in particular for the electrical conductivity. The preferred direction for both materials is the a direction in TE application. Most strikingly, when 800 K is reached, SnS2 can show a peak power factor (PF) of 15.50 µW cm(-1) K(-2) along the a direction, while a relatively low value (11.72 µW cm(-1) K(-2)) is obtained in the same direction of SnSe2. These values are comparable to those observed in thermoelectrics such as SnSe and SnS. At 300 K, the minimum lattice thermal conductivity (κmin) along the a direction is estimated to be about 0.67 and 0.55 W m(-1) K(-1) for SnS2 and SnSe2, respectively, even lower than the measured lattice thermal conductivity of Bi2Te3 (1.28 W m(-1) K(-1) at 300 K). The reasonable PF and κmin suggest that both SnS2 and SnSe2 are potential thermoelectric materials. Indeed, the estimated peak ZT can approach 0.88 for SnSe2 and a higher value of 0.96 for SnS2 along the a direction at a carrier concentration of 1.94 × 10(19) (SnSe2) vs. 2.87 × 10(19) cm(-3) (SnS2). The best ZT values in SnX2 (X = S, Se) are comparable to that in Bi2Te3 (0.8), a typical thermoelectric material. We hope that this theoretical investigation will provide useful information for further experimental and theoretical studies on optimizing the thermoelectric properties of SnX2 materials.

11.
Phys Chem Chem Phys ; 17(14): 9126-34, 2015 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-25759866

RESUMEN

Oxidative coupling of toxic pollutant CO to form the platform raw chemical material dimethyl oxalate (DMO) has been industrialized however the catalytic mechanism has been unknown so far. The reaction mechanism of CO oxidative coupling to form DMO on a Pd(111) surface has been investigated using density functional theory (DFT) and in situ diffuse reflectance infrared (DRIR) spectroscopy. DFT calculations and in situ DRIRS measurements indicate that two co-adsorbed intermediates COOMe and OCCO, initiate the reaction. C-C coupling occurs earlier due to a low coupling barrier and small steric hindrance. The results also suggest that Pd(111) is selective towards DMO over DMC, and that CO pre-adsorption and CO in excess effectively enhance the yield of DMO. The microscopic elucidation of this important reaction suggests improvements in coal-to-EG (CTEG) production which can be applied in practice to effectively enhance the yield and reduce the cost. The results may help with further fine-tuning and designing of high-efficient noble metal catalysts.

12.
J Phys Chem A ; 119(29): 8174-81, 2015 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-26107466

RESUMEN

The second-order nonlinear optical (NLO) properties of a series of dithienylethene- (DTE-) containing Pt(II) complexes have been investigated by density functional theory calculations. The first hyperpolarizabilities ß of studied systems can be greatly enhanced by simple ligand substitutions. Because of the nature of DTE units, the ß values also can be varied by the use of lights in the studied systems. The highest ß difference between photoisomers can over 1000 × 10(-30) esu, with the contrast around five times. Thus, the studied systems can act as effective photoswitchable second-order NLO materials. The time-dependent density functional theory calculations revealed that the charge transfer patterns of studied systems have special characters compared to other reported DTE-containing NLO switched chromogens, the DTE units mainly act as electron-donors in studied systems, and the variation of ß can be viewed as alternation of donor abilities of DTE units; thus, our work also proposed a new mechanism for designing photoswitched NLO multifunctional materials.

13.
J Phys Chem A ; 118(39): 9113-9, 2014 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-24984238

RESUMEN

The binding modes of urokinase-type plasminogen activator (uPA) with five inhibitors (1-(7-sulfonamidoisoquinolinyl) guanidine derivatives) were predicted based on molecular dynamic simulations. MM/PBSA free-energy calculations and MM/GBSA free-energy decomposition analyses were performed on the studied complexes. The calculated binding free energies are reasonably consistent with the experimental results. The free-energy decomposition analyses elucidate the different contributions of the energy of some favorable residues in the interactions between protein and ligand of each complex. The results indicate that the inhibitors mainly interact with the S1 pocket of uPA, wherein the hydrogen bonds and the interactions between guanidines and the corresponding residues play an important role. Moreover, hydrogen bond analyses show the water-mediated hydrogen-bond network near the S1 pocket between uPA, and the ligand probably leads to excellent selectivity of these inhibitors on uPA.


Asunto(s)
Guanidinas/química , Inhibidores de Proteasas/química , Activador de Plasminógeno de Tipo Uroquinasa/antagonistas & inhibidores , Activador de Plasminógeno de Tipo Uroquinasa/química , Enlace de Hidrógeno , Simulación de Dinámica Molecular , Estructura Molecular , Unión Proteica , Electricidad Estática , Agua/química
14.
Anal Chim Acta ; 1250: 340975, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36898821

RESUMEN

Nanozymes were emerged as the next generation of enzyme-mimics which exhibit great applications in various fields, but there is rarely report in the electrochemical detection of heavy metal ions. In this work, Ti3C2Tx MXene nanoribbons@gold (Ti3C2Tx MNR@Au) nanohybrid was prepared firstly via a simple self-reduction process and its nanozyme activity was studied. The results showed the peroxidase-like activity of bare Ti3C2Tx MNR@Au is extremely weak, while in the presence of Hg2+, the related nanozyme activity is stimulated and improved remarkably, which can easily catalyze oxidation of several colorless substrates (e.g., o-phenylenediamine) to form colored products. Interestingly, the product of o-phenylenediamine exhibits a strong reduction current which is considerably sensitive to the Hg2+ concentration. Based on this phenomenon, an innovative and highly sensitive homogeneous voltammetric (HVC) sensing strategy was then proposed to detect Hg2+ via transforming the colorimetric method into electrochemistry since it can exhibit several unique advantages (e.g., rapid responsiveness, high sensitivity and quantificational). Compared to the conventional electrochemical sensing methods for Hg2+, the designed HVC strategy can avoid the modification processes of electrode coupled with enhanced sensing performances. Therefore, we expect the as-proposed nanozyme-based HVC sensing strategy provides a new development direction for detecting Hg2+ and other heavy metals.


Asunto(s)
Mercurio , Nanopartículas del Metal , Nanotubos de Carbono , Colorimetría/métodos , Oro , Titanio , Iones
15.
Spectrochim Acta A Mol Biomol Spectrosc ; 293: 122484, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36796242

RESUMEN

In this work, a ratiometric fluorescence sensing platform was established to detect Cu2+ and D-PA (d-penicillamine) based on nitrogen-doped Ti3C2 MXene quantum dots (N-MODs) that was prepared via a simple hydrothermal method and exhibited strong fluorescent and photoluminescence performance as well as excellent stability. Since the oxidation reaction between o-phenylenediamine (OPD) and Cu2+ induced the formation of 2,3-diaminophenazine (ox-OPD) which not only can emerge an emission peak at 570 nm, but also inhibit the fluorescence intensity of N-MQDs at 450 nm, a ratiometric reverse fluorescence sensor via fluorescence resonance energy transfer (FRET) was designed to sensitively detect Cu2+, where N-MQDs acted as energy donor and ox-OPD as energy acceptor. More importantly, another considerably interesting phenomenon was that their catalytic oxidation reaction can be restrained in the presence of D-PA because of the coordination of Cu2+ with D-PA, further triggering the obvious changes in ratio fluorescent signal and color, thus a ratiometric fluorescent sensor of determining D-PA was proposed also in this work. After optimizing various conditions, the ratiometric sensing platform showed rather low detection limits for Cu2+ (3.0 nM) and D-PA (0.115 µM), coupled with excellent sensitivity and stability.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Puntos Cuánticos , Nitrógeno , Titanio , Colorantes Fluorescentes , Carbono , Límite de Detección
16.
J Colloid Interface Sci ; 635: 159-166, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36584616

RESUMEN

The development of excellent ternary metal oxides as electron transporting layers (ETLs) is highly challenging for perovskite solar cells (PSCs). In this study, ZnTiO3 (ZTO) nanoparticles are synthesized via a facile sol-gel method, and used as an ETL in PSCs. Furthermore, for the first time, iodine-doped g-C3N4 (ICN) is introduced into ZnTiO3-based ETL as additive via a glass-assisted annealing route. Characterizations demonstrate that the ZnTiO3-based ETL with the addition of ICN will enhance the PCE, which is attributed to the improved crystalline quality and more favorable energy level alignment. Moreover, the existence of ICN will strengthen the interfacial cohesion between perovskite layer and ETL as well as retard the perovskite crystals from decomposing, leading to the high quality capping light-harvesting layer upon ICN-modified ZnTiO3 (ZTO-ICN) film. Consequently, a champion device fabricated with ZTO-ICN ETL achieves a maximum PCE of 19.17 % with an open circuit voltage (Voc) of 1.012 V, a short-circuit current density (Jsc) of 26.32 mA cm-2 and a fill factor (FF) of 0.720 under AM 1.5 G sunlight (100 mW cm-2).

17.
Spectrochim Acta A Mol Biomol Spectrosc ; 283: 121710, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-35952587

RESUMEN

Dispersion correction in theoretical determination of cyclopeptide conformations is emphasized. Whether in gas approximation or in solvation simulation, the density functional theory with London dispersion correction (DFT-D3) demonstrates that only 2-3 conformers can stably coexist for cycloaspeptides (A, D, G) at B3LYP-D3 and CAM-B3LYP-D3. Conformational rationality is confirmed by electronic circular dichroism (ECD). Whether for Cotton effect or for excitation energy, TD-B3LYP-D3 has better performances than TD-CAM-B3LYP-D3 because the former can better reproduce the experiment. A molecular orbital analysis is used to interpret ECD, where two energy bands observed in experiment originates from the ππ* transitions other than the σπ* transitions. Long-range correction and solvent effect make H-bonds shorten, and dispersion correction makes them further shorten.


Asunto(s)
Electrónica , Dicroismo Circular , Simulación por Computador , Conformación Molecular , Solventes/química
18.
ACS Appl Mater Interfaces ; 14(18): 21098-21105, 2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35482947

RESUMEN

Although tremendous progress has been achieved in the field of hydrogen-bonded organic frameworks (HOFs), the low stability, small/none pores, and difficult functionality severely obstruct their development. Herein, a novel robust mesoporous HOF (HOF-FAFU-1) decorated with a high density of free hydroxy moieties has been designed and readily synthesized in the de novo synthesis. In HOF-FAFU-1, the planar building blocks are connected to each other by typical intermolecular carboxylate dimers to form two-dimensional (2D) layers with sql topology, which are further connected to their adjacent layers by face-to-face π-π interactions to obtain a three-dimensional (3D) open mesoporous framework. Owing to the high density of intermolecular hydrogen bonding and strong π-π interactions, HOF-FAFU-1 is very stable, allowing it to retain its structure in aqueous solutions with a pH range of 1-9. Benefiting from the decorated hydroxy moieties, HOF-FAFU-1 was exploited as a fluorescent sensor for hypochlorite detection in water media by a turn-off mode, which cannot be realized by its nonhydroxy groups anchoring counterpart (HOF-TCBP). The proposed sensing system is highly efficient, validated by a very broad linear range (0-0.45 mM), fast response (15 s), and small limit of detection (LOD) (1.32 µM). The fluorescent quenching of HOF-FAFU-1 toward hypochlorite was also investigated, mainly being ascribed to the transformation of building blocks from the fluorescent reduced state to the nonfluorescent oxidative state. This work not only demonstrates that HOFs integrated with high stability and large pores as well as high density of functional groups can be simultaneously realized by judicious design of building blocks but also conceptually elucidates that such HOFs can effectively extend the application fields of HOFs.

19.
J Hazard Mater ; 433: 128789, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35358815

RESUMEN

Owing to the abundant uranium reserves in the oceans, the collection of uranium from seawater has aroused the widespread interest. Compared to the uranium extraction from ore, uranium collection from seawater is a more environmentally friendly strategy. The amidoxime (AO) functional group has been considered as one of the most efficient chelating groups for uranium capture. In this work, by drawing upon the photothermal character and antibacterial activity of cuttlefish ink, a cuttlefish ink loaded polyamidoxime (CI-PAO) membrane adsorbent is developed. Under one-sun illumination, the CI-PAO membrane shows a high extraction capacity of 488.76 mg-U/g-Ads in 500 mL 8 ppm uranium spiked simulated seawater, which is 1.24 times higher than PAO membrane. The adsorption rate of CI-PAO membrane is increased by 32.04%. Furthermore, exhibiting roughly 75% bacteriostatic rate in composite marine bacteria, the CI-PAO shows a dramatically antibacterial activity, which effectively prevents the functional sites on the adsorbent surface from being occupied by the biofouling blocks. After immersing in natural seawater for 4 weeks, light-irradiated CI-PAO gave high uranium uptake capacity of 6.17 mg-U/g-Ads. Hence, the CI-PAO membrane adsorbent can be considered as a potential candidate for the practical application for uranium extraction from seawater.


Asunto(s)
Uranio , Animales , Antibacterianos/farmacología , Decapodiformes , Tinta , Agua de Mar
20.
Materials (Basel) ; 14(14)2021 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-34300829

RESUMEN

Carbon material is widely used and has good electrical and thermal conductivity. It is often used as a filler to endow insulating polymer with electrical and thermal conductivity. Three-dimensional printing technology is an advance in modeling and manufacturing technology. From the forming principle, it offers a new production principle of layered manufacturing and layer by layer stacking formation, which fundamentally simplifies the production process and makes large-scale personalized production possible. Conductive carbon materials combined with 3D printing technology have a variety of potential applications, such as multi-shape sensors, wearable devices, supercapacitors, and so on. In this review, carbon black, carbon nanotubes, carbon fiber, graphene, and other common conductive carbon materials are briefly introduced. The working principle, advantages and disadvantages of common 3D printing technology are reviewed. The research situation of 3D printable conductive carbon materials in recent years is further summarized, and the performance characteristics and application prospects of these conductive carbon materials are also discussed. Finally, the potential applications of 3D printable conductive carbon materials are concluded, and the future development direction of 3D printable conductive carbon materials has also been prospected.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA