Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int Orthop ; 47(2): 527-532, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36422704

RESUMEN

PURPOSE: Both robots and navigation are effective strategies for optimizing screw placement, as compared to freehand placement. However, few studies have compared the accuracy and efficiency of these two techniques. Thus, the purpose of this study is to compare the accuracy and efficiency of robotic and navigation-assisted screw placement in the spinal vertebrae. METHODS: The 24 spine models were divided into a robot- and navigation-assisted groups according to the left and right sides of the pedicle. The C-arm transmits image data simultaneously to the robot and navigates using only one scan. After screw placement, the accuracy of the two techniques were compared using "angular deviation" and "Gertzbein and Robbins scale" in different segments (C1-7, T1-4, T5-8, T9-12, and L1-S1). In addition, operation times were compared between robot- and navigation-assisted groups. RESULTS: Robots and navigation systems can simultaneously assist in screw placement. The robot-assisted group had significantly less angular deviation than the navigation-assisted group from C1 to S1 (p < 0.001). At the C1-7 and T1-4 segments, the robot-assisted group had a higher rate of acceptable screws than the robot-assisted group. However, at the T5-8, T9-12, and L1-S1 segments, no significant difference was found in the incidence of acceptable screws between the two groups. Moreover, robot-assisted screw placement required less operative time than navigation (p < 0.05). CONCLUSION: The robot is more accurate and efficient than navigation in aiding screw placement. In addition, robots and navigation can be combined without increasing the number of fluoroscopic views.


Asunto(s)
Tornillos Pediculares , Procedimientos Quirúrgicos Robotizados , Robótica , Fusión Vertebral , Cirugía Asistida por Computador , Humanos , Robótica/métodos , Procedimientos Quirúrgicos Robotizados/métodos , Columna Vertebral/cirugía , Cirugía Asistida por Computador/métodos , Fusión Vertebral/métodos , Vértebras Lumbares/cirugía , Estudios Retrospectivos
2.
BMC Musculoskelet Disord ; 23(1): 259, 2022 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-35300653

RESUMEN

BACKGROUND: Healthy subjects showed normal variance of cervical spine reposition errors of approximately 2 degrees. Effects of experimental pain on cervical spine reposition errors were unknown; thus, the purpose of this study was to investigate the effects of experimental pain on cervical spine reposition errors. METHODS: A repeated measured study design was applied. Thirty healthy subjects (12 males) were recruited. Reposition errors were extracted from upright cervical positions before and after cervical flexion movement in healthy subjects before and during experimental neck pain. Cervical spine reposition errors were calculated based on anatomical landmarks of each cervical joint. Reposition errors were extracted in degrees as constant errors and absolute errors for further statistical analysis. Repeated measures analysis of variance (RM-ANOVA) was applied to analyse experimental pain effects on either constant errors or absolute errors of different cervical joints. RESULTS: The cervical spine showed non-significant difference in reposition errors regarding the constant errors (P>0.05) while larger reposition errors regarding the absolute errors during experimental pain compared to before experimental pain (P<0.001). In addition, the pain level joint (C4/C5) and its adjacent joints (C3/C4 and C5/C6) indicated larger reposition errors regarding absolute errors (P=0.035, P=0.329 and P=0.103, respectively). CONCLUSIONS: This study firstly investigated the cervical spine reposition errors in experimental neck pain and further found the joints adjacent to the pain level showed larger errors compared to the distant joints regarding absolute errors. It may imply that the larger reposition errors in specific cervical joint indicate probable injury or pain existed adjacent to the joints.


Asunto(s)
Vértebras Cervicales , Cuello , Humanos , Masculino , Movimiento , Dolor de Cuello/diagnóstico , Dolor de Cuello/etiología , Rango del Movimiento Articular
3.
J Cell Biochem ; 121(11): 4450-4457, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32162384

RESUMEN

The mechanisms driving the pathologic progression of osteoarthritis (OA) have not yet to be fully elucidated. Excessive and irreversible breakdown of the extracellular matrix is the main hallmark of OA. Inhibitors of DPP-4 have been widely used for over a decade as a treatment for type-2 diabetes, but the promising function of DPP-4 inhibitors in chronic inflammatory diseases has only begun to receive attention. Here, we treated human chondrocytes with interleukin-1ß (IL-1ß) with or without teneligliptin to assess the role of DPP-4 in the enzyme-driven reduction of type II collagen. Treatment with teneligliptin significantly reduced IL-1ß-induced expression of tumor necrosis factor α, IL-6, and IL-8, generation of reactive oxygen species, increase in metalloproteinase 3 (MMP-3) and MMP-13, reduction of tissue inhibitors of matrix metalloproteinase 1 (TIMP-1) and TIMP-2, release of lactate dehydrogenase, and activation of the mitogen-activated protein kinase p38 and nuclear factor κB intracellular signaling pathways, among other things. These findings demonstrate that treatment with teneligliptin may act as a novel therapy to slow or halt disease progression in patients with OA.


Asunto(s)
Condrocitos/metabolismo , Matriz Extracelular/metabolismo , Interleucina-1beta/farmacología , Pirazoles/farmacología , Tiazolidinas/farmacología , Proliferación Celular , Células Cultivadas , Condrocitos/citología , Condrocitos/efectos de los fármacos , Colágeno Tipo II/metabolismo , Citocinas/metabolismo , Matriz Extracelular/efectos de los fármacos , Humanos , Transducción de Señal
4.
Cell Biochem Funct ; 38(8): 1152-1160, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33047358

RESUMEN

MiR-140-5p is high expressed in normal fracture healing, but its specific role and mechanism in tissue-to-bone healing are rarely reported. Therefore, this study investigated the effects of miR-140-5p on tissue-to-bone healing. Clone formation experiment, flow cytometry, Alizarin Red S Staining and Oil Red O Staining were performed to investigate the biological characteristics of mouse embryonic bone marrow mesenchymal stem cells C3H10T1/2. MiR-140-5p mimic was transfected into osteogenic medium (OS)-treated C3H10T1/2 cells to investigate the effects of miR-140-5p on osteogenic differentiation. MiR-140-5p transgenic mouse model and the transgenic fracture model were established, and the effects of miR-140-5p on osteogenic differentiation, bone mineral density (BMD) and bone mass of bone tissues were detected by haematoxylin and eosin staining and computed tomography scan. The expressions of osteocalcin, differentiation-related genes (Runx2, ALP, Spp1 and Bglap3) and miR-140-5p were determined by quantitative real-time polymerase chain reaction. C3H10T1/2 cells showed the abilities of forming cloned differentiation of osteogenesis, fat cells, and its phenotypes including CD44, CD90.1 and Sca-1 but excluding CD45 haematopoietic stem cell marker. Overexpression of miR-140-5p promoted the expressions of differentiation-related genes and calcium deposition of OS-treated C3H10T1/2 cells. MiR-140-5p increased the expression of osteocalcin, BMD and bone mass and promoted bone healing of miR-140-5p-transgenic mice with fracture. MiR-140-5p promoted osteogenic differentiation of mouse embryonic bone marrow mesenchymal stem cells and post-fracture healing in mice. SIGNIFICANCE OF THE STUDY: C3H10T1/2 cells showed the abilities of forming cloned differentiation of osteogenesis, fat cells and its phenotypes including CD44, CD90.1 and Sca-1 but excluding CD45 haematopoietic stem cell marker. Overexpression of miR-140-5p promoted the expressions of differentiation-related genes and calcium deposition of osteogenic medium-treated C3H10T1/2 cells. MiR-140-5p increased the expression of osteocalcin and bone mineral density and bone mass and promoted bone healing of miR-140-5p-transgenic mice with fracture. Our results showed that miR-140-5p promoted osteogenic differentiation of mouse embryonic bone marrow mesenchymal stem cells and post-fracture healing in mice, which may be a therapeutic target for treating fractures and promoting bone healing.


Asunto(s)
Células de la Médula Ósea/metabolismo , Diferenciación Celular , Curación de Fractura , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/metabolismo , MicroARNs/metabolismo , Células Madre Embrionarias de Ratones , Osteogénesis , Animales , Línea Celular , Masculino , Ratones , Ratones Endogámicos BALB C , MicroARNs/genética , Células Madre Embrionarias de Ratones/metabolismo , Células Madre Embrionarias de Ratones/trasplante
5.
J Cell Biochem ; 120(7): 11582-11592, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30821011

RESUMEN

Spinal cord injury (SCI) has been a major burden on the society because of the high rate of disability. Receptor-interacting protein 3 (RIP3)-mediated necroptosis is a newly discovered pathway of programmed cell death and is involved in multiple pathologies of various human diseases. Micro RNAs (miRNAs) have been shown to be a potential target for therapeutic interventions after SCI. The aim of the present study is to explore the potential role of miR-223-3p and possible mechanism in SCI. We found that miR-223-3p was significantly downregulated in spinal neurons after H2 O 2 -induced damage, while RIP3-mediated necroptosis was elevated. Accordingly, RIP3-mediated necroptosis and the inflammatory factor secretion could be significantly inhibited by Nec-1 treatment. In adittion, overexpression of miR-223-3p in spinal neurons protected against H 2 O 2 -induced necroptosis, and ablation of miR-223-3p exhibited the opposite effect. We found that miR-223-3p bound to the 3'-untranslated region of RIP3 mRNA to negatively regulate the expression of RIP3. Moreover, the activated RIP3 reversed the inhibition of RIP3 and MLKL expression and the levels of TNF-α, IL-1ß, and lactate dehydrogenase, which were induced by transfection with miR-223-3p in a H 2 O 2 -induced model. Finally, these results indicate that miR-223-3p negatively regulates the RIP3 necroptotic signaling cascades and inflammatory factor secretion, which significantly relieves injury of spinal neurons. The miR-223-3p/RIP3 pathway offers a novel therapeutic target for the protection of spinal neurons after SCI.

6.
J Neuroinflammation ; 15(1): 48, 2018 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-29458437

RESUMEN

BACKGROUND: Traumatic brain injury (TBI) is a critical public health and socioeconomic problem throughout the world. Inflammation-induced secondary injury is one of the vital pathogenic parameters of TBI. Molecular signaling cascades of pyroptosis, a specific type of cellular necrosis, are key drivers of TBI-induced inflammation. METHODS: In this study, mice with genetically ablated caspase-1 (caspase-1-/-) were subjected to controlled cortical impact injury in vivo, and primary neuron deficient in caspase-1 through siRNA knockdown and pharmacologic inhibition was stimulated by mechanical scratch, equiaxial stretch, and LPS/ATP in vitro. We evaluated the effects of caspase-1 deficiency on neurological deficits, inflammatory factors, histopathology, cell apoptosis, and pyroptosis. RESULTS: During the acute post-injury period (0-48 h) in vivo, motor deficits, anti-inflammatory cytokines (TGF-ß and IL-10), pro-inflammatory cytokines (IFN-γ, IL-1ß, and IL-18), and blood lactate dehydrogenase (LDH), as well as pyroptosis-related proteins (caspase-1, caspase-1 fragments, caspase-11 and GSDMD), were increased. Caspase-1 was activated in the cortex of TBI mice. Inflammatory activation was more profound in injured wild-type mice than in caspase-1-/- mice. In vitro, mechanical scratch, equiaxial stretch, and LPS/ATP-induced neuron pyroptosis, apoptosis, LDH release, and increased expression of inflammatory factors. The effects of mechanical and inflammatory stress were reduced through inhibition of caspase-1 activity through siRNA knockdown and pharmacologic inhibition. CONCLUSION: Collectively, these data demonstrate that pyroptosis is involved in neuroinflammation and neuronal injury after TBI, and ablation of caspase-1 inhibits TBI-induced pyroptosis. Our findings suggest that caspase-1 may be a potential target for TBI therapy.


Asunto(s)
Lesiones Traumáticas del Encéfalo/enzimología , Lesiones Traumáticas del Encéfalo/prevención & control , Caspasa 1/deficiencia , Piroptosis/fisiología , Animales , Lesiones Traumáticas del Encéfalo/patología , Células Cultivadas , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados
7.
Tumour Biol ; 37(1): 353-60, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26219893

RESUMEN

The objective of this study was to explore the biological roles of microRNA-140 (miR-140) in tumor growth, migration, and metastasis of osteosarcoma (OS) in vivo and in vitro. Between 2007 and 2014, 47 cases of OS samples and normal bone tissue samples adjacent to OS were selected from our hospital. Tissue biopsies from OS patients were used to measure miR-140 levels to obtain a correlation between clinicopathological features and miR-140 expression. In vitro, MG63 human osteosarcoma cells were divided into four groups: blank group, miR-140 mimic group, miR-140 inhibitor group, and negative control (NC; empty plasmid) group. qRT-PCR was used to detect miR-140 expression, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to detect cell proliferation, flow cytometry was used to detect cell cycle distribution, and scratch migration assay was used to detect cell migration. In vivo, the relative expression of miR-140 level in OS tissue was lower than that in the adjacent normal bone tissue. miR-140 expression is inversely correlated with tumor size, Enneking stage, and tumor metastasis. In vitro, compared with blank group and NC group, relative miR-140 expression was increased, cell proliferation was inhibited, cell population in G0/G1 phase was increased, cell population in G2/M phase and S phases and proliferation index (PI), and cell migration distance were decreased in the miR-140 mimic group, but the relative expression and all the cell indexes were found opposite trend in the miR-140 inhibitor group. In conclusion, in vivo and vitro findings provided evidence that miR-140 could inhibit the growth, migration, and metastasis of OS cells.


Asunto(s)
Neoplasias Óseas/metabolismo , Regulación Neoplásica de la Expresión Génica , MicroARNs/metabolismo , Osteosarcoma/metabolismo , Adulto , Ciclo Celular , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Femenino , Citometría de Flujo , Humanos , Masculino , Persona de Mediana Edad , Metástasis de la Neoplasia , Sensibilidad y Especificidad
8.
Eur Spine J ; 23(11): 2350-8, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24777671

RESUMEN

PURPOSE: Many studies have reported on the segmental motion range of the lumbar spine using various in vitro and in vivo experimental designs. However, the in vivo weightbearing dynamic motion characteristics of the L4-5 and L5-S1 motion segments are still not clearly described in literature. This study investigated in vivo motion of the lumbar spine during a weight-lifting activity. METHODS: Ten asymptomatic subjects (M/F: 5/5; age: 40-60 years) were recruited. The lumbar segment of each subject was MRI-scanned to construct 3D models of the L2-S1 vertebrae. The lumbar spine was then imaged using a dual fluoroscopic imaging system as the subject performed a weight-lifting activity from a lumbar flexion position (45°) to maximal extension position. The 3D vertebral models and the fluoroscopic images were used to reproduce the in vivo vertebral positions along the motion path. The relative translations and rotations of each motion segment were analyzed. RESULTS: All vertebral motion segments, L2-3, L3-4, L4-5 and L5-S1, rotated similarly during the lifting motion. L4-5 showed the largest anterior-posterior (AP) translation with 2.9 ± 1.5 mm and was significantly larger than L5-S1 (p < 0.05). L5-S1 showed the largest proximal-distal (PD) translation with 2.8 ± 0.9 mm and was significantly larger than all other motion segments (p < 0.05). CONCLUSIONS: The lower lumbar motion segments L4-5 and L5-S1 showed larger AP and PD translations, respectively, than the higher vertebral motion segments during the weight-lifting motion. The data provide insight into the physiological motion characteristics of the lumbar spine and potential mechanical mechanisms of lumbar disease development.


Asunto(s)
Vértebras Lumbares/fisiología , Movimiento/fisiología , Sacro/fisiología , Levantamiento de Peso/fisiología , Adulto , Fenómenos Biomecánicos/fisiología , Femenino , Fluoroscopía , Humanos , Imagenología Tridimensional , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Rotación
9.
Int J Oncol ; 64(4)2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38390935

RESUMEN

Osteosarcoma (OS) is a frequently occurring primary bone tumor, mostly affecting children, adolescents and young adults. Before 1970, surgical resection was the main treatment method for OS, but the clinical results were not promising. Subsequently, the advent of chemotherapy has improved the prognosis of patients with OS. However, there is still a high incidence of metastasis or recurrence, and chemotherapy has several side effects, thus making the 5­year survival rate markedly low. Recently, chimeric antigen receptor T (CAR­T) cell therapy represents an alternative immunotherapy approach with significant potential for hematologic malignancies. Nevertheless, the application of CAR­T cells in the treatment of OS faces numerous challenges. The present review focused on the advances in the development of CAR­T cells to improve their clinical efficacy, and discussed ways to overcome the difficulties faced by CAR T­cell therapy for OS.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Receptores Quiméricos de Antígenos , Niño , Humanos , Adolescente , Receptores Quiméricos de Antígenos/genética , Inmunoterapia Adoptiva/métodos , Osteosarcoma/terapia , Neoplasias Óseas/terapia , Linfocitos T , Receptores de Antígenos de Linfocitos T/genética
10.
Stem Cell Res Ther ; 15(1): 6, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167108

RESUMEN

Spinal cord injury (SCI) is a catastrophic injury to the central nervous system (CNS) that can lead to sensory and motor dysfunction, which seriously affects patients' quality of life and imposes a major economic burden on society. The pathological process of SCI is divided into primary and secondary injury, and secondary injury is a cascade of amplified responses triggered by the primary injury. Due to the complexity of the pathological mechanisms of SCI, there is no clear and effective treatment strategy in clinical practice. Exosomes, which are extracellular vesicles of endoplasmic origin with a diameter of 30-150 nm, play a critical role in intercellular communication and have become an ideal vehicle for drug delivery. A growing body of evidence suggests that exosomes have great potential for repairing SCI. In this review, we introduce exosome preparation, functions, and administration routes. In addition, we summarize the effect and mechanism by which various exosomes repair SCI and review the efficacy of exosomes in combination with other strategies to repair SCI. Finally, the challenges and prospects of the use of exosomes to repair SCI are described.


Asunto(s)
Exosomas , Traumatismos de la Médula Espinal , Humanos , Exosomas/patología , Calidad de Vida , Traumatismos de la Médula Espinal/terapia , Traumatismos de la Médula Espinal/patología , Sistema Nervioso Central , Sistemas de Liberación de Medicamentos , Médula Espinal/patología
11.
Int J Surg ; 110(2): 921-933, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37983808

RESUMEN

INTRODUCTION: Spinal meningiomas (SMs) are relatively rare central nervous system tumors that usually trigger neurological symptoms. The prevalence of SMs is increasing with the aging of the global population. This study aimed to perform a systematic epidemiologic and survival prognostic analysis of SMs to evaluate their public health impact and to develop a novel method to estimate the overall survival at 3-year, 5-year, and 10-year in patients with SMs. METHODS: Five thousand one hundred fifty eight patients with SMs were recruited from the Surveillance, Epidemiology, and End Results (SEER) database from 2000 to 2019. Firstly, descriptive analysis was performed on the epidemiology of SMs. Secondly, these individuals were randomly allocated to the training and validation sets in a ratio of 7:3. Kaplan-Meier method and Cox regression analysis were utilized in the training set to identify independent prognostic factors and to construct a nomogram for survival prognosis. Subsequently, the discriminative power, predictive performance, and clinical utility of the nomogram were evaluated by receiver operating characteristic curve and decision curve analysis. Finally, a mortality risk stratification system and a web-based dynamic nomogram were constructed to quantify the risk of mortality in patients with SMs. RESULTS: The annual age-adjusted incidence rates of SMs increased steadily since 2004, reaching a rate of 0.40 cases per 100 000 population in 2019, with a female-to-male ratio of ~4:1. The age groups of 50-59, 60-69, and 70-79 years old were the most prevalent ages for SMs, accounting for 19.08, 24.93, and 23.32%, respectively. In addition, seven independent prognostic factors were identified to establish a prognostic nomogram for patients with SMs. The decision curve analysis and receiver operating characteristic curve indicated that the nomogram had high clinical utility and favorable accuracy. Moreover, the mortality risk stratification system effectively divided patients into low-risk, middle-risk, and high-risk subgroups. CONCLUSIONS: SMs are relatively rare benign spinal tumors prevalent in the white elderly female population. Clinicians could use the nomogram to personalize the prediction of the overall survival probability of patients with SMs, categorize these patients into different mortality risk subgroups, and develop personalized decision-making plans. Moreover, the web-based dynamic nomogram could help to further promote clinical application and assist clinicians in providing personalized counseling, timely monitoring, and clinical assessment for patients.


Asunto(s)
Neoplasias Meníngeas , Meningioma , Anciano , Humanos , Femenino , Masculino , Persona de Mediana Edad , Meningioma/epidemiología , Estudios Retrospectivos , Nomogramas , Salud Pública , Neoplasias Meníngeas/epidemiología , Pronóstico , Programa de VERF
12.
Int J Biol Macromol ; 259(Pt 2): 129073, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38184033

RESUMEN

Fluid hydrogel is proper to be incorporated with rigid porous prosthesis interface, acting as a soft carrier to support cells and therapeutic factors, to enhance osseointegration. In the previous study, we innovatively utilized self-healing supramolecular hydrogel as 3D cell culture platform to incorporate with 3D printed porous titanium alloy scaffold, constructing a novel bioactive interface. However, the concrete relationship and mechanism of hydrogel stiffness influencing cellular behaviors of bone marrow mesenchymal stem cells (BMSCs) within the interface are still inconclusive. Herein, we synthesized a series of supramolecular hydrogels with variable stiffness as extracellular matrix (ECM) to enhance the osseointegration of 3D printed prosthesis interface. BMSCs exposed to stiff hydrogel received massive environmental mechanical stimulations, subsequently transducing biophysical cues into biochemical signal through mechanotransduction process. The mRNA-sequencing analysis revealed that the activated FAK-MAPK pathway played significant roles in promoting osteogenic differentiation, thus contributing to a strong osseointegration. Our work preliminarily demonstrated the relationship of ECM stiffness and osteogenic differentiation trend of BMSCs, and optimized stiffness of hydrogel within a certain range benefitting for osteogenic differentiation and prosthesis interface osseointegration, providing a valuable insight into the development of orthopaedic implants equipped with osteogenic mechanotransduction ability.


Asunto(s)
Hidrogeles , Células Madre Mesenquimatosas , Hidrogeles/química , Osteogénesis , Oseointegración , Mecanotransducción Celular , Prótesis e Implantes , Diferenciación Celular
13.
Mater Today Bio ; 27: 101118, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38975238

RESUMEN

Metallic screws are one of the most common implants in orthopedics. However, the solid design of the screw has often resulted in stress shielding and postoperative loosening, substantially impacting its long-term fixation effect after surgery. Four additive manufacturing porous structures (Fischer-Koch S, Octet, Diamond, and Double Gyroid) are now introduced into the screw to fix those issues. Upon applying the four porous structures, elastic modulus in the screw decreased about 2∼15 times to reduce the occurrence of stress shielding, and bone regeneration effect on the screw surface increased about 1∼50 times to improve bone tissue regrowing. With more bone tissue regrowing on the inner surface of porous screw, a stiffer integration between screw and bone tissue will be achieved, which improves the long-term fixation of the screw tremendously. The biofunctions of the four topologies on osteogenesis have been fully explored, which provides an advanced topology optimization scheme for the screw utilized in orthopedic fixation.

14.
J Control Release ; 363: 721-732, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37741462

RESUMEN

The spine is the most common site of bone metastases, as 20%-40% of cancer patients suffer from spinal metastases. Treatments for spinal metastases are scarce and palliative, primarily aiming at relieving bone pain and preserving neurological function. The bioactive agents-mediated therapies are the most effective modalities for treating spinal metastases because they achieve systematic and specific tumor regression. However, the clinical applications of some bioactive agents are limited due to the lack of targeting capabilities, severe side effects, and vulnerability of drug resistance. Fortunately, advanced biomaterials have been developed as excipients to enhance these treatments, including chemotherapy, phototherapy, magnetic hyperthermia therapy, and combination therapy, by improving tumor targeting and enabling sustaining and stimuli-responsive release of various therapeutic agents. Herein, the review summarizes the development of biomaterials-mediated bioactive agents for enhanced treatments of spinal metastases and predicts future research trends.


Asunto(s)
Neoplasias de la Columna Vertebral , Humanos , Neoplasias de la Columna Vertebral/tratamiento farmacológico , Neoplasias de la Columna Vertebral/secundario , Materiales Biocompatibles/uso terapéutico , Fototerapia
15.
Front Surg ; 10: 1019410, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36816003

RESUMEN

In clinical practice, laminectomy is a commonly used procedure for spinal decompression in patients suffering from spinal disorders such as ossification of ligamentum flavum, lumbar stenosis, severe spinal fracture, and intraspinal tumors. However, the loss of posterior column bony support, the extensive proliferation of fibroblasts and scar formation after laminectomy, and other complications (such as postoperative epidural fibrosis and iatrogenic instability) may cause new symptoms requiring revision surgery. Implantation of an artificial lamina prosthesis is one of the most important methods to avoid post-laminectomy complications. Artificial lamina is a type of synthetic lamina tissue made of various materials and shapes designed to replace the resected autologous lamina. Artificial laminae can provide a barrier between the dural sac and posterior soft tissues to prevent postoperative epidural fibrosis and paravertebral muscle compression and provide mechanical support to maintain spinal alignment. In this paper, we briefly review the complications of laminectomy and the necessity of artificial lamina, then we review various artificial laminae from clinical practice and laboratory research perspectives. Based on a combination of additive manufacturing technology and finite element analysis for spine surgery, we propose a new designing perspective of artificial lamina for potential use in clinical practice.

16.
Front Bioeng Biotechnol ; 11: 1229210, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37744254

RESUMEN

Introduction: Anterior cervical discectomy and fusion (ACDF) is a standard procedure for treating symptomatic cervical degenerative disease. The cage and plate constructs (CPCs) are widely employed in ACDF to maintain spinal stability and to provide immediate support. However, several instrument-related complications such as dysphagia, cage subsidence, and adjacent segment degeneration have been reported in the previous literature. This study aimed to design a novel individualized zero-profile (NIZP) cage and evaluate its potential to enhance the biomechanical performance between the instrument and the cervical spine. Methods: The intact finite element models of C3-C7 were constructed and validated. A NIZP cage was designed based on the anatomical parameters of the subject's C5/6. The ACDF procedure was simulated and the CPCs and NIZP cage were implanted separately. The range of motion (ROM), intradiscal pressure (IDP), and peak von Mises stresses of annulus fibrosus were compared between the two surgical models after ACDF under four motion conditions. Additionally, the biomechanical performance of the CPCs and NIZP cage were evaluated. Results: Compared with the intact model, the ROM of the surgical segment was significantly decreased for both surgical models under four motion conditions. Additionally, there was an increase in IDP and peak von Mises stress of annulus fibrosus in the adjacent segment. The NIZP cage had a more subtle impact on postoperative IDP and peak von Mises stress of annulus fibrosus in adjacent segments compared to CPCs. Meanwhile, the peak von Mises stresses of the NIZP cage were reduced by 90.0-120.0 MPa, and the average von Mises stresses were reduced by 12.61-17.56 MPa under different motion conditions. Regarding the fixation screws, the peak von Mises stresses in the screws of the NIZP cage increased by 10.0-40.0 MPa and the average von Mises stresses increased by 2.37-10.10 MPa. Conclusion: The NIZP cage could effectively reconstruct spinal stability in ACDF procedure by finite element study. Compared with the CPCs, the NIZP cage had better biomechanical performance, with a lower stress distribution on the cage and a more moderate effect on the adjacent segmental discs. Therefore, the NIZP cage could prevent postoperative dysphagia as well as decrease the risk of subsidence and adjacent disc degeneration following ACDF. In addition, this study could serve as a valuable reference for the development of personalized instruments.

17.
Biomater Res ; 27(1): 116, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37968707

RESUMEN

Malignant bone tumors are characterized by severe disability rate, mortality rate, and heavy recurrence rate owing to the complex pathogenesis and insidious disease progression, which seriously affect the terminal quality of patients' lives. Photothermal therapy (PTT) has emerged as an attractive adjunctive treatment offering prominent hyperthermal therapeutic effects to enhance the effectiveness of surgical treatment and avoid recurrence. Simultaneously, various advanced biomaterials with photothermal capacity are currently created to address malignant bone tumors, performing distinctive biological functions, including nanomaterials, bioceramics (BC), polymers, and hydrogels et al. Furthermore, PTT-related combination therapeutic strategies can provide more significant curative benefits by reducing drug toxicity, improving tumor-killing efficiency, stimulating anti-cancer immunity, and improving immune sensitivity relative to monotherapy, even in complex tumor microenvironments (TME). This review summarizes the current advanced biomaterials applicable in PTT and relevant combination therapies on malignant bone tumors for the first time. The multiple choices of advanced biomaterials, treatment methods, and new prospects for future research in treating malignant bone tumors with PTT are generalized to provide guidance. Malignant bone tumors seriously affect the terminal quality of patients' lives. Photothermal therapy (PTT) has emerged as an attractive adjunctive treatment enhancing the effectiveness of surgical treatment and avoiding recurrence. In this review, advanced biomaterials applicable in the PTT of malignant bone tumors and their distinctive biological functions are comprehensively summarized for the first time. Simultaneously, multiple PTT-related combination therapeutic strategies are classified to optimize practical clinical issues, contributing to the selection of biomaterials, therapeutic alternatives, and research perspectives for the adjuvant treatment of malignant bone tumors with PTT in the future.

18.
Global Spine J ; : 21925682231191094, 2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37498194

RESUMEN

STUDY DESIGN: Retrospective cohort study. OBJECTIVE: Spinal cord astrocytoma (SCA) is a rare central nervous system malignancy that typically requires early surgical intervention. However, the substantial frequency of relapse and bad outcomes limit the surgical advantage for patients. Herein, we aimed to determine the independent prognostic factors of cancer-specific survival (CSS) in post-surgical patients with primary SCA and to develop a new method to estimate the chances of CSS in these patients at 3-, 5- and 10-year. METHODS: A total of 364 postoperative patients with SCA were recruited from the Surveillance, Epidemiology, and End Results database and randomly assigned to the training and validation sets. Univariate and multivariate Cox regression assessments were used to identify independent prognostic indicators. Second, a nomogram was established by integrating these indicators to estimate 3-, 5-, and 10-year CSS in patients with SCA who underwent surgery. Subsequently, the discriminatory power and predictive performance of the nomogram were assessed using the receiver operating characteristic (ROC) curve, calibration curves, and decision curve analysis (DCA). Finally, a mortality risk stratification system was generated. RESULTS: Age, tumor stage, histological type, and radiotherapy were recognized as potential predictive indicators of CSS for postoperative patients with SCA. The ROC curve and DCA indicate that the nomogram has good accuracy and high clinical utility. Furthermore, the mortality risk stratification system efficiently divides patients into 3 risk subgroups. CONCLUSIONS: The nomogram could accurately anticipate the 3-, 5-, and 10-year percentages of CSS in postoperative patients with SCA. It could assist clinicians with personalized medical counseling, risk stratification management, and clinical decision-making, improving the clinical outcomes of these patients.

19.
J Mater Chem B ; 11(39): 9369-9385, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37712890

RESUMEN

Bone tumors are invasive diseases with a tendency toward recurrence, disability, and high mortality rates due to their grievous complications. As a commercial polymeric biomaterial, polymethylmethacrylate (PMMA) cement possesses remarkable mechanical properties, injectability, and plasticity and is, therefore, frequently applied in bone tissue engineering. Numerous positive effects in bone tumor treatment have been demonstrated, including biomechanical stabilization, analgesic effects, and tumor recurrence prevention. However, to our knowledge, a comprehensive evaluation of the application of the PMMA cement in bone tumor treatment has not yet been reported. This review comprehensively evaluates the efficiency and complications of the PMMA cement in bone tumor treatment, for the first time, and introduces advanced modification strategies, providing an objective and reliable reference for the application of the PMMA cement in treating bone tumors. We have also summarized the current research on modifications to enhance the anti-tumor efficacy of the PMMA cement, such as drug carriers and magnetic hyperthermia.

20.
Comput Biol Med ; 146: 105576, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35576823

RESUMEN

Cervical vertebral landmark detection is a significant pre-task for vertebral relative motion parameter measurement, which is helpful for doctors to diagnose cervical spine diseases. Accurate cervical vertebral landmark detection could provide reliable motion parameter measurement results. However, different cervical spines in X-rays with various poses and angles have imposed quite challenges. It is observed that there are similar appearances of vertebral bones in different cervical spine X-rays. For this, to fully use these similar features, a multi-input adaptive U-Net (MultiIA-UNet) focusing on the similar local features between different cervical spine X-rays is put forward to do cervical vertebral landmark detection accurately and effectively. MultiIA-UNet used an improved U-Net structure as backbone network combining with the novel adaptive convolution module to better extract changing global features. At training, MultiIA-UNet applied a multi-input strategy to extract features from random pairs of training data at the same time, and then learned their similar local features through a subspace alignment module. We collected a dataset including 688 cervical spine X-rays to evaluate MultiIA-UNet. The results exhibited that our method demonstrated the state-of-the-art performance (the minimum average point to point error of 12.988 pixels). In addition, we further evaluated the effect of these landmark detection results on cervical motion angle parameter measurement. It showed that our method was capable to obtain more accurate cervical spine motion angle parameters (the minimum symmetric mean absolute percentage is 26.969%). MultiIA-UNet could be an efficient and accurate landmark detection method for doctors to do cervical vertebral motion analysis.


Asunto(s)
Vértebras Cervicales , Redes Neurales de la Computación , Vértebras Cervicales/diagnóstico por imagen , Radiografía , Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA