Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Acta Pharmacol Sin ; 42(9): 1437-1448, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33303990

RESUMEN

Aflibercept, as a soluble decoy vascular endothelial growth factor receptor, Which has been used as a first-line monotherapy for cancers. Aflibercept often causes cardiovascular toxicities including hypertension, but the mechanisms underlying aflibercept-induced hypertension remain unknown. In this study we investigated the effect of short-term and long-term administration of aflibercept on blood pressure (BP), vascular function, NO bioavailability, oxidative stress and endothelin 1 (ET-1) in mice and cultured endothelial cells. We showed that injection of a single-dose of aflibercept (18.2, 36.4 mg/kg, iv) rapidly and dose-dependently elevated BP in mice. Aflibercept treatment markedly impaired endothelial-dependent relaxation (EDR) and resulted in NADPH oxidases 1 (NOX1)- and NADPH oxidases 4 (NOX4)-mediated generation of ROS, decreased the activation of protein kinase B (Akt) and endothelial nitric oxide synthase (eNOS) concurrently with a reduction in nitric oxide (NO) production and elevation of ET-1 levels in mouse aortas; these effects were greatly attenuated by supplementation of L-arginine (L-arg, 0.5 or 1.0 g/kg, bid, ig) before aflibercept injection. Similar results were observed in L-arg-pretreated cultured endothelial cells, showing markedly decreased ROS accumulation and AKT/eNOS/NO signaling impairment induced by aflibercept. In order to assess the effects of long-term aflibercept on hypertension and to evaluate the beneficial effects of L-arg supplementation, we administered these two drugs to WT mice for up to 14 days (at an interval of two days). Long-term administration of aflibercept resulted in a sustained increase in BP and a severely impaired EDR, which are associated with NOX1/NOX4-mediated production of ROS, increase in ET-1, inhibition of AKT/eNOS/NO signaling and a decreased expression of cationic amino acid transporter (CAT-1). The effects caused by long-term administration were greatly attenuated by L-arg supplementation in a dose-dependent manner. We conclude that aflibercept leads to vascular dysfunction and hypertension by inhibiting CAT-1/AKT/eNOS/NO signaling, increasing ET-1, and activating NOX1/NOX4-mediated oxidative stress, which can be suppressed by supplementation of L-arg. Therefore, L-arg could be a potential therapeutic agent for aflibercept-induced hypertension.


Asunto(s)
Arginina/farmacología , Hipertensión/inducido químicamente , Óxido Nítrico Sintasa de Tipo III/metabolismo , Óxido Nítrico/metabolismo , Proteínas Recombinantes de Fusión/efectos adversos , Enfermedades Vasculares/inducido químicamente , Animales , Aorta/metabolismo , Aorta/patología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Hipertensión/metabolismo , Hipertensión/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores de Factores de Crecimiento Endotelial Vascular , Proteínas Recombinantes de Fusión/farmacología , Transducción de Señal/efectos de los fármacos , Enfermedades Vasculares/metabolismo , Enfermedades Vasculares/fisiopatología
2.
Hepatology ; 68(5): 1769-1785, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29704259

RESUMEN

There is no effective treatment method for nonalcoholic fatty liver disease (NAFLD), the most common liver disease. The exact mechanism underlying the pathogenesis of NAFLD remains to be elucidated. Here, we report that tumor necrosis factor receptor-associated ubiquitous scaffolding and signaling protein (TRUSS) acts as a positive regulator of NAFLD and in a variety of metabolic disorders. TRUSS expression was increased in the human liver specimens with NAFLD or nonalcoholic steatohepatitis, and in the livers of high-fat diet (HFD)-induced and genetically obese mice. Conditional knockout of TRUSS in hepatocytes significantly ameliorated hepatic steatosis, insulin resistance, glucose intolerance, and inflammatory responses in mice after HFD challenge or in spontaneous obese mice with normal chow feeding. All of these HFD-induced pathological phenotypes were exacerbated in mice overexpressing TRUSS in hepatocytes. We show that TRUSS physically interacts with the inhibitor of nuclear factor κB α (IκBα) and promotes the ubiquitination and degradation of IκBα, which leads to aberrant activation of nuclear factor κB (NF-κB). Overexpressing IκBαS32A/S36A , a phosphorylation-resistant mutant of IκBα, in the hepatocyte-specific TRUSS overexpressing mice almost abolished HFD-induced NAFLD and metabolic disorders. Conclusion: Hepatocyte TRUSS promotes pathological stimuli-induced NAFLD and metabolic disorders, through activation of NF-κB by promoting ubiquitination and degradation of IκBα. Our findings may provide a strategy for the prevention and treatment of NAFLD by targeting TRUSS.


Asunto(s)
Hepatocitos/metabolismo , Inhibidor NF-kappaB alfa/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Canales Catiónicos TRPC/metabolismo , Transactivadores/metabolismo , Animales , Western Blotting , Citocinas/sangre , Hepatocitos/patología , Humanos , Inmunohistoquímica , Inmunoprecipitación , Resistencia a la Insulina/genética , Hígado/metabolismo , Hígado/patología , Ratones , Ratones Endogámicos C57BL , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal , Ubiquitinación
3.
Cell Physiol Biochem ; 47(3): 1051-1059, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29843130

RESUMEN

BACKGROUND/AIMS: The epithelial sodium channel (ENaC) in cortical collecting duct (CCD) principal cells plays a critical role in regulating systemic blood pressure. We have previously shown that cholesterol (Cho) in the apical cell membrane regulates ENaC; however, the underlying mechanism remains unclear. METHODS: Patch-clamp technique and confocal microscopy were used to evaluate ENaC activity and density. RESULTS: Here we show that extraction of membrane Cho with methyl-ß-cyclodextrin (MßCD) significantly reduced amiloride-sensitive current and ENaC single-channel activity. The effects were reproduced by inhibition of Cho synthesis in the cells with lovastatin. We have previously shown that phosphatidylinositol-4,5-bisphosphate (PIP2), an ENaC activator, is predominantly located in the microvilli, a specialized apical membrane domain. Here, our confocal microscopy data show that α-ENaC was co-localized with PIP2 in the microvilli and that Cho was also co-localized with PIP2 in the microvilli. Either extraction of Cho with MßCD or inhibition of Cho synthesis with lovastatin consistently reduced the levels of Cho, PIP2, and ENaC in the microvilli. CONCLUSIONS: Since PIP2 can directly stimulate ENaC and also affect ENaC trafficking, these data suggest that depletion of Cho reduces ENaC apical density and activity at least in part by decreasing PIP2 in the microvilli.


Asunto(s)
Colesterol/metabolismo , Canales Epiteliales de Sodio/metabolismo , Túbulos Renales Colectores/metabolismo , Microvellosidades/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Animales , Proteínas de Xenopus , Xenopus laevis , beta-Ciclodextrinas/farmacología
4.
J Biol Chem ; 290(48): 28805-11, 2015 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-26451045

RESUMEN

The renal epithelial sodium channel (ENaC) provides regulated sodium transport in the distal nephron. The effects of intracellular calcium ([Ca(2+)]i) on this channel are only beginning to be elucidated. It appears from previous studies that the [Ca(2+)]i increases downstream of ATP administration may have a polarized effect on ENaC, where apical application of ATP and the subsequent [Ca(2+)]i increase have an inhibitory effect on the channel, whereas basolateral ATP and [Ca(2+)]i have a stimulatory effect. We asked whether this polarized effect of ATP is, in fact, reflective of a polarized effect of increased [Ca(2+)]i on ENaC and what underlying mechanism is responsible. We began by performing patch clamp experiments in which ENaC activity was measured during apical or basolateral application of ionomycin to increase [Ca(2+)]i near the apical or basolateral membrane, respectively. We found that ENaC does indeed respond to increased [Ca(2+)]i in a polarized fashion, with apical increases being inhibitory and basolateral increases stimulating channel activity. In other epithelial cell types, mitochondria sequester [Ca(2+)]i, creating [Ca(2+)]i signaling microdomains within the cell that are dependent on mitochondrial localization. We found that mitochondria localize in bands just beneath the apical and basolateral membranes in two different cortical collecting duct principal cell lines and in cortical collecting duct principal cells in mouse kidney tissue. We found that inhibiting mitochondrial [Ca(2+)]i uptake destroyed the polarized response of ENaC to [Ca(2+)]i. Overall, our data suggest that ENaC is regulated by [Ca(2+)]i in a polarized fashion and that this polarization is maintained by mitochondrial [Ca(2+)]i sequestration.


Asunto(s)
Señalización del Calcio/fisiología , Calcio/metabolismo , Canales Epiteliales de Sodio/metabolismo , Túbulos Renales Colectores/metabolismo , Mitocondrias/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Línea Celular , Ratones , Xenopus laevis
5.
Am J Physiol Renal Physiol ; 311(6): F1360-F1368, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27956381

RESUMEN

A Ca2+-activated nonselective cation channel (NSCCa) is found in principal cells of the mouse cortical collecting duct (CCD). However, the molecular identity of this channel remains unclear. We used mpkCCDc14 cells, a mouse CCD principal cell line, to determine whether NSCCa represents the transient receptor potential (TRP) channel, the melastatin subfamily 4 (TRPM4). A Ca2+-sensitive single-channel current was observed in inside-out patches excised from the apical membrane of mpkCCDc14 cells. Like TRPM4 channels found in other cell types, this channel has an equal permeability for Na+ and K+ and has a linear current-voltage relationship with a slope conductance of ~23 pS. The channel was inhibited by a specific TRPM4 inhibitor, 9-phenanthrol. Moreover, the frequency of observing this channel was dramatically decreased in TRPM4 knockdown mpkCCDc14 cells. Unlike those previously reported in other cell types, the TRPM4 in mpkCCDc14 cells was unable to be activated by hydrogen peroxide (H2O2). Conversely, after treatment with H2O2, TRPM4 density in the apical membrane of mpkCCDc14 cells was significantly decreased. The channel in intact cell-attached patches was activated by ionomycin (a Ca2+ ionophore), but not by ATP (a purinergic P2 receptor agonist). These data suggest that the NSCCa current previously described in CCD principal cells is actually carried through TRPM4 channels. However, the physiological role of this channel in the CCD remains to be further determined.


Asunto(s)
Calcio/metabolismo , Peróxido de Hidrógeno/farmacología , Túbulos Renales Colectores/efectos de los fármacos , Canales Catiónicos TRPM/metabolismo , Adenosina Trifosfato/farmacología , Animales , Línea Celular , Relación Dosis-Respuesta a Droga , Ionomicina/farmacología , Túbulos Renales Colectores/metabolismo , Ratones , Fenantrenos/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Transporte de Proteínas/efectos de los fármacos
6.
J Cell Physiol ; 230(2): 337-46, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24962810

RESUMEN

Anoctamin1 (ANO1) encodes a Ca(2+)-activated chloride (Cl(-)) channel (CaCC) in variety tissues of many species. Whether ANO1 expresses and functions as a CaCC in cardiomyocytes remain unknown. The objective of this study is to characterize the molecular and functional expression of ANO1 in cardiac myocytes and the role of ANO1-encoded CaCCs in ischemia-induced arrhythmias in the heart. Quantitative real-time RT-PCR, immunofluorescence staining assays, and immunohistochemistry identified the molecular expression, location, and distribution of ANO1 in mouse ventricular myocytes (mVMs). Patch-clamp recordings combined with pharmacological analyses found that ANO1 was responsible for a Ca(2+)-activated Cl(-) current (I(Cl.Ca)) in cardiomyocytes. Myocardial ischemia led to a significant increase in the current density of I(Cl.Ca), which was inhibited by a specific ANO1 inhibitor, T16A(inh)-A01, and an antibody targeting at the pore area of ANO1. Moreover, cardiomyocytes isolated from mice with ischemia-induced arrhythmias had an accelerated early phase 1 repolarization of action potentials (APs) and a deeper "spike and dome" compared to control cardiomyocytes from non-ischemia mice. Application of the antibody targeting at ANO1 pore prevented the ischemia-induced early phase 1 repolarization acceleration and caused a much shallower "spike and dome". We conclude that ANO1 encodes CaCC and plays a significant role in the phase 1 repolarization of APs in mVMs. The ischemia-induced increase in ANO1 expression may be responsible for the increased density of I(Cl.Ca) in the ischemic heart and may contribute, at least in part, to ischemia-induced arrhythmias.


Asunto(s)
Arritmias Cardíacas/metabolismo , Calcio/metabolismo , Canales de Cloruro/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Potenciales de Acción/fisiología , Animales , Anoctamina-1 , Agonistas de los Canales de Cloruro/farmacología , Modelos Animales de Enfermedad , Masculino , Ratones Endogámicos BALB C , Miocitos Cardíacos/efectos de los fármacos , Técnicas de Placa-Clamp , Daño por Reperfusión/metabolismo
7.
Adv Sci (Weinh) ; : e2400486, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38978328

RESUMEN

The risk for suffering immune checkpoint inhibitors (ICIs)-associated myocarditis increases in patients with pre-existing conditions and the mechanisms remain to be clarified. Spatial transcriptomics, single-cell RNA sequencing, and flow cytometry are used to decipher how anti-cytotoxic T lymphocyte antigen-4 m2a antibody (anti-CTLA-4 m2a antibody) aggravated cardiac injury in experimental autoimmune myocarditis (EAM) mice. It is found that anti-CTLA-4 m2a antibody increases cardiac fibroblast-derived C-X-C motif chemokine ligand 1 (Cxcl1), which promots neutrophil infiltration to the myocarditic zones (MZs) of EAM mice via enhanced Cxcl1-Cxcr2 chemotaxis. It is identified that the C-C motif chemokine ligand 5 (Ccl5)-neutrophil subpopulation is responsible for high activity of cytokine production, adaptive immune response, NF-κB signaling, and cellular response to interferon-gamma and that the Ccl5-neutrophil subpopulation and its-associated proinflammatory cytokines/chemokines promoted macrophage (Mφ) polarization to M1 Mφ. These altered infiltrating landscape and phenotypic switch of immune cells, and proinflammatory factors synergistically aggravated anti-CTLA-4 m2a antibody-induced cardiac injury in EAM mice. Neutralizing neutrophils, Cxcl1, and applying Cxcr2 antagonist dramatically alleviates anti-CTLA-4 m2a antibody-induced leukocyte infiltration, cardiac fibrosis, and dysfunction. It is suggested that Ccl5-neutrophil subpopulation plays a critical role in aggravating anti-CTLA-4 m2a antibody-induced cardiac injury in EAM mice. This data may provide a strategic rational for preventing/curing ICIs-associated myocarditis.

8.
Biochim Biophys Acta Mol Basis Dis ; 1869(1): 166586, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36374802

RESUMEN

Lenvatinib, a multitarget tyrosine kinase inhibitor (TKI), increases the incidence of severe hypertension and thus the incidence of cardiovascular complications. Inhibition of ferroptosis, a newly recognized type of cell death, alleviates endothelial dysfunction. Here, we report that lenvatinib-induced hypertension is associated with ferroptosis of endothelial cells. RNA sequencing (RNA-seq) showed that lenvatinib led to ferroptosis of endothelial cells and that administration of mouse with ferrostatin-1 (Fer-1), a specific ferroptosis inhibitor, dramatically ameliorated lenvatinib-induced hypertension and reversed lenvatinib-induced impairment of endothelium-dependent relaxation (EDR). Furthermore, lenvatinib significantly reduced glutathione peroxidase 4 (GPX4) expressions in the mouse aorta and human umbilical vein endothelial cells (HUVECs) and increased lipid peroxidation, lactate dehydrogenase (LDH) release, and malondialdehyde (MDA) levels in HUVECs. Immunofluorescence and Western blotting showed that lenvatinib significantly reduced Yes-associated protein (YAP) nuclear translocation but not cytoplasmic YAP expression in HUVECs. The data, generated from both in vivo and in vitro, showed that lenvatinib reduced total YAP (t-YAP) expression and increased the phosphorylation of YAP at both Ser127 and Ser397, without affecting YAP mRNA levels in HUVECs. XMU-MP-1 mediated YAP activation or YAP overexpression effectively attenuated the lenvatinib-induced decrease in GPX4 expression and increases in LDH release and MDA levels. In addition, overexpression of YAP in HUVECs ameliorated lenvatinib-induced decrease in the mRNA and protein levels of spermidine/spermine N (1)-acetyltransferase-1 (SAT1), heme oxygenase-1 (HO-1), and ferritin heavy chain 1 (FTH1). Taken together, our data suggest that lenvatinib-induced inhibition of YAP led to ferroptosis of endothelial cells and subsequently resulted in vascular dysfunction and hypertension.


Asunto(s)
Ferroptosis , Hipertensión , Humanos , Ratones , Animales , Presión Sanguínea , Células Endoteliales de la Vena Umbilical Humana , ARN Mensajero
9.
Front Pharmacol ; 13: 970812, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36278222

RESUMEN

Background: Previous studies have demonstrated that activated endothelial epithelial sodium channel (EnNaC) impairs vasodilatation, which contributes to salt-sensitive hypertension. Here, we investigate whether mesenteric artery (MA) EnNaC is involved in cold exposure-induced hypertension (CIH) and identify the underlying mechanisms in SD rats. Methods: One group of rats was housed at room temperature and served as control. Three groups of rats were kept in a 4°C cold incubator for 10 h/day; among which two groups were administrated with either benzamil (EnNaC blocker) or eplerenone (mineralocorticoid receptor antagonist, MR). Blood pressure (BP), vasodilatation, and endothelial function were measured with tail-cuff plethysmography, isometric myograph, and Total Nitric Oxide (NO) Assay kit, respectively. A cell-attached patch-clamp technique, in split-open MA, was used to determine the role of EnNaC in CIH rats. Furthermore, the plasma aldosterone levels were detected using an ELISA kit; and Western blot analysis was used to examine the relative expression levels of Sgk1 and Nedd4-2 proteins in the MA of SD rats. Results: We demonstrated that cold exposure increased BP, impaired vasodilatation, and caused endothelial dysfunction in rats. The activity of EnNaC significantly increased, concomitant with an increased level of plasma aldosterone and activation of Sgk1/Nedd4-2 signaling. Importantly, CIH was inhibited by either eplerenone or benzamil. It appeared that cold-induced decrease in NO production and impairment of endothelium-dependent relaxation (EDR) were significantly ameliorated by either eplerenone or benzamil in MA of CIH rats. Moreover, treatment of MAs with aldosterone resulted in an activation of EnNaC, a reduction of NO, and an impairment of EDR, which were significantly inhibited by either eplerenone or GSK650394 (Sgk1 inhibitor) or benzamil. Conclusion: Activation of EnNaC contributes to CIH; we suggest that pharmacological inhibition of the MR/Sgk1/Nedd4-2/EnNaC axis may be a potential therapeutic strategy for CIH.

10.
Front Pharmacol ; 12: 617165, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33841146

RESUMEN

Antiangiogenic tyrosine kinases inhibitors induce hypertension, which may increase the incidents of cardiovascular complications and limit their use. However, the mechanisms by which usage of TKIs results in hypertension have not been fully understood. Here, we report the potential mechanisms of how sunitinib, a widely used TKI, induces hypertension. Male SD rats were randomly divided into control group and sunitinib-administrated group. We show that sunitinib administration for seven days caused a significant increase in artery blood pressure, along with glycerolipid metabolism abnormalities including decreased food intake and low body weight, hypoglycemia, hyperinsulinemia. Sunitinib administration also resulted in a significant increase in the levels of insulin autoantibody (IAA), cyclic adenosine monophosphate and free fatty acid in serum; whereas, sunitinib administration had no effects on serum glucagon levels. Sunitinib led to the decreased insulin sensitivity as determined by insulin tolerance test (ITT) and glucose tolerance test (GTT), reflecting insulin resistance occurred in sunitinib-treated rats. The results obtained from wire myograph assay in the mesenteric arteries show that endothelium-dependent relaxation, but not endothelium-independent relaxation, was impaired by sunitinib. Furthermore, western blot analysis revealed that the expressions levels of phosphorylated IRS-1, Pellino-1, AKT and eNOS were significantly attenuated by sunitinib in rat mesenteric artery tissues and in the sunitinib-treated primary cultured mesenteric artery endothelial cells. The levels of serum and endothelium-derived nitric oxide were also significantly decreased by sunitinib. Moreover, sunitinib-induced decrease in the expression levels of phosphorylated AKT and eNOS was further reduced by knocking down of Pellino-1 in MAECs. Our results suggest that sunitinib causes vascular dysfunction and hypertension, which are associated with insulin resistance- and Pellino-1-mediated inhibition of AKT/eNOS/NO signaling. Our results may provide a rational for preventing and/or treating sunitinib-induced endothelial dysfunction and hypertension.

11.
Cancer Lett ; 502: 97-107, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33429007

RESUMEN

Nearly 70% of ovarian cancer (OC) patients experience recurrence within the first 2 years after initial treatment. Emerging evidence indicates that long non-coding RNAs (lncRNAs) play a pivotal role in the pathogenesis of OC progression, resistance to therapy and recurrent OC (ROC). Transcriptome profiling studies have reported differential expression patterns of lncRNAs in OC which are related to increased cell invasion, metastasis and drug resistance. In this review, we highlighted the roles of lncRNAs in OC progression and outlined the potential molecular mechanisms by which lncRNAs impact on ROC. Recent advances using lncRNAs as potential biomarkers for screening, detection, prediction, response to therapy and as therapeutic targets are discussed.


Asunto(s)
Recurrencia Local de Neoplasia/genética , Neoplasias Ováricas/genética , ARN Largo no Codificante/genética , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Biomarcadores de Tumor/genética , Progresión de la Enfermedad , Resistencia a Antineoplásicos/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Recurrencia Local de Neoplasia/tratamiento farmacológico , Neoplasias Ováricas/tratamiento farmacológico , Medicina de Precisión , ARN Largo no Codificante/efectos de los fármacos
12.
Biochim Biophys Acta Mol Basis Dis ; 1867(1): 165989, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33065235

RESUMEN

We previously showed that increased epithelial sodium channel (ENaC) activity in endothelial cells induced by oxidized low-density lipoprotein (ox-LDL) contributes to vasculature dysfunction. Here, we investigated whether ENaC participates in the pathological process of atherosclerosis using LDL receptor-deficient (LDLr-/-) mice. Male C57BL/6 and LDLr-/- mice were fed a normal diet (ND) or high fat diet (HFD) for 10 weeks. Our data show that treatment of LDLr-/- mice with a specific ENaC blocker, benzamil, significantly decreased atherosclerotic lesion formation and expression of matrix metalloproteinase 2 (MMP2) and metalloproteinase 9 (MMP9) in aortic arteries. Furthermore, benzamil ameliorated HFD-induced impairment of aortic endothelium-dependent dilation by reducing expression of proinflammatory cytokines, including TNF-α, IL-1ß, and IL-6 and production of adhesion molecules including VCAM-1 and ICAM-1 in both C57BL/6 and LDLr-/- mice fed with HFD. In addition, HFD significantly increased ENaC activity and the levels of serum lipids, including ox-LDL. Our in vitro data further demonstrated that exogenous ox-LDL significantly increased the production of TNF-α, IL-1ß, IL-6, VCAM-1 and ICAM-1. This ox-LDL-induced increase in inflammatory cytokines and adhesion molecules was reversed by γ-ENaC silencing or by treatment with the cyclooxygenase-2 (COX-2) antagonist celecoxib. Benzamil inhibited HFD-induced increase in COX-2 expression in aortic tissue in both C57BL/6 and LDLr-/- mice, and γ-ENaC gene silencing attenuated ox-LDL-induced COX-2 expression in HUVECs. These data together suggest that HFD-induced activation of ENaC stimulates inflammatory signaling, thereby contributes to HFD-induced endothelial dysfunction and atherosclerotic lesion formation. Thus, targeting endothelial ENaC may be a promising strategy to halt atherogenesis.


Asunto(s)
Aterosclerosis , Dieta Alta en Grasa/efectos adversos , Canales Epiteliales de Sodio/metabolismo , Receptores de LDL/deficiencia , Animales , Aterosclerosis/inducido químicamente , Aterosclerosis/genética , Aterosclerosis/metabolismo , Aterosclerosis/patología , Citocinas/genética , Citocinas/metabolismo , Canales Epiteliales de Sodio/genética , Células Endoteliales de la Vena Umbilical Humana , Humanos , Molécula 1 de Adhesión Intercelular/genética , Molécula 1 de Adhesión Intercelular/metabolismo , Lipoproteínas LDL/genética , Lipoproteínas LDL/metabolismo , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones , Ratones Noqueados , Receptores de LDL/metabolismo , Molécula 1 de Adhesión Celular Vascular/genética , Molécula 1 de Adhesión Celular Vascular/metabolismo
13.
Front Pharmacol ; 12: 627875, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34054517

RESUMEN

We have shown that cholesterol regulates the activity of ion channels in mouse cortical collecting duct (CCD) mpkCCDc14 cells and that the transient receptor potential melastatin 4 (TRPM4) channel is expressed in these cells. However, whether TRPM4 channel is regulated by cholesterol remains unclear. Here, we performed inside-out patch-clamp experiments and found that inhibition of cholesterol biosynthesis by lovastatin significantly decreased, whereas enrichment of cholesterol with exogenous cholesterol significantly increased, TRPM4 channel open probability (Po) by regulating its sensitivity to Ca2+ in mpkCCDc14 cells. In addition, inside-out patch-clamp data show that acute depletion of cholesterol in the membrane inner leaflet by methyl-ß-cyclodextrin (MßCD) significantly reduced TRPM4 Po, which was reversed by exogenous cholesterol. Moreover, immunofluorescence microscopy, Western blot, cell-surface biotinylation, and patch clamp analysis show that neither inhibition of intracellular cholesterol biosynthesis with lovastatin nor application of exogenous cholesterol had effect on TRPM4 channel protein abundance in the plasma membrane of mpkCCDc14 cells. Sucrose density gradient centrifugation studies demonstrate that TRPM4 was mainly located in cholesterol-rich lipid rafts. Lipid-protein overlay experiments show that TRPM4 directly interacted with several anionic phospholipids, including PI(4,5)P2. Depletion of PI(4,5)P2 with either wortmannin or PGE2 abrogated the stimulatory effects of exogenous cholesterol on TRPM4 activity, whereas exogenous PI(4,5)P2 (diC8-PI(4,5)P2, a water-soluble analog) increased the effects. These results suggest that cholesterol stimulates TRPM4 via a PI(4,5)P2-dependent mechanism.

14.
Front Cell Dev Biol ; 9: 672335, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34222246

RESUMEN

BACKGROUND: Hyperhomocysteinemia (HHcy) causes cardiovascular diseases via regulating inflammatory responses. We investigated whether and how the epithelial sodium channel (ENaC), a recently identified ion channel in endothelial cells, plays a role in HHcy-induced endothelial dysfunction. METHODS: Cell-attached patch-clamp recording in acute split-open aortic endothelial cells, western blot, confocal imaging, and wire myograph combined with pharmacological approaches were used to determine whether HHcy-mediated inflammatory signaling leads to endothelial dysfunction via stimulating ENaC. RESULTS: The data showed that 4 weeks after L-methionine diet the levels of plasma Hcy were significantly increased and the ENaC was dramatically activated in mouse aortic endothelial cells. Administration of benzamil, a specific ENaC blocker, ameliorated L-methionine diet-induced impairment of endothelium-dependent relaxation (EDR) and reversed Hcy-induced increase in ENaC activity. Pharmacological inhibition of NADPH oxidase, reactive oxygen species (ROS), cyclooxygenase-2 (COX-2)/thromboxane B2 (TXB2), or serum/glucocorticoid regulated kinase 1 (SGK1) effectively attenuated both the Hcy-induced activation of endothelial ENaC and impairment of EDR. Our in vitro data showed that both NADPH oxidase inhibitor and an ROS scavenger reversed Hcy-induced increase in COX-2 expression in human umbilical vein endothelial cells (HUVECs). Moreover, Hcy-induced increase in expression levels of SGK-1, phosphorylated-SGK-1, and phosphorylated neural precursor cell-expressed developmentally downregulated protein 4-2 (p-Nedd4-2) in HUVECs were significantly blunted by a COX-2 inhibitor. CONCLUSION: We show that Hcy activates endothelial ENaC and subsequently impairs EDR of mouse aorta, via ROS/COX-2-dependent activation of SGK-1/Nedd4-2 signaling. Our study provides a rational that blockade of the endothelial ENaC could be potential method to prevent and/or to treat Hcy-induced cardiovascular disease.

15.
Front Pharmacol ; 12: 665111, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34122084

RESUMEN

The use of cyclosporine A (CsA) in transplant recipients is limited due to its side effects of causing severe hypertension. We have previously shown that CsA increases the activity of the epithelial sodium channel (ENaC) in cultured distal nephron cells. However, it remains unknown whether ENaC mediates CsA-induced hypertension and how we could prevent hypertension. Our data show that the open probability of ENaC in principal cells of split-open cortical collecting ducts was significantly increased after treatment of rats with CsA; the increase was attenuated by lovastatin. Moreover, CsA also elevated the levels of intracellular cholesterol (Cho), intracellular reactive oxygen species (ROS) via activation of NADPH oxidase p47phox, serum- and glucocorticoid-induced kinase isoform 1 (Sgk1), and phosphorylated neural precursor cell-expressed developmentally downregulated protein 4-2 (p-Nedd4-2) in the kidney cortex. Lovastatin also abolished CsA-induced elevation of α-, ß-, and γ-ENaC expressions. CsA elevated systolic blood pressure in rats; the elevation was completely reversed by lovastatin (an inhibitor of cholesterol synthesis), NaHS (a donor of H2S which ameliorated CsA-induced elevation of reactive oxygen species), or amiloride (a potent ENaC blocker). These results suggest that CsA elevates blood pressure by increasing ENaC activity via a signaling cascade associated with elevation of intracellular ROS, activation of Sgk1, and inactivation of Nedd4-2 in an intracellular cholesterol-dependent manner. Our data also show that NaHS ameliorates CsA-induced hypertension by inhibition of oxidative stress.

16.
Oxid Med Cell Longev ; 2020: 3921897, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33194000

RESUMEN

Previous studies have shown that high salt induces artery stiffness by causing endothelial dysfunction via increased sodium influx. We used our unique split-open artery technique combined with protein biochemistry and in vitro measurement of vascular tone to test a hypothesis that bone morphogenetic protein 4 (BMP4) mediates high salt-induced loss of vascular relaxation by stimulating the epithelial sodium channel (ENaC) in endothelial cells. The data show that high salt intake increased BMP4 both in endothelial cells and in the serum and that exogenous BMP4 stimulated ENaC in endothelial cells. The data also show that the stimulation is mediated by p38 mitogen-activated protein kinases (p38 MAPK) and serum and glucocorticoid-regulated kinase 1 (Sgk1)/neural precursor cell expressed developmentally downregulated gene 4-2 (Nedd4-2) (Sgk1/Nedd4-2). Furthermore, BMP4 decreased mesenteric artery relaxation in a benzamil-sensitive manner. These results suggest that high salt intake stimulates endothelial cells to express and release BMP4 and that the released BMP4 reduces artery relaxation by stimulating ENaC in endothelial cells. Therefore, stimulation of ENaC in endothelial cells by BMP4 may serve as another pathway to participate in the complex mechanism of salt-sensitive (SS) hypertension.


Asunto(s)
Proteína Morfogenética Ósea 4/metabolismo , Células Endoteliales/metabolismo , Canales Epiteliales de Sodio/metabolismo , Hipertensión/metabolismo , Sistema de Señalización de MAP Quinasas , Animales , Células Endoteliales/patología , Hipertensión/patología , Proteínas Inmediatas-Precoces/metabolismo , Masculino , Ubiquitina-Proteína Ligasas Nedd4/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Ratas , Ratas Endogámicas Dahl , Ratas Sprague-Dawley , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
17.
J Neurosci ; 28(37): 9173-82, 2008 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-18784298

RESUMEN

Na(+) channels are often spliced but little is known about the functional consequences of splicing. We have been studying the regulation of Na(+) current inactivation in an electric fish model in which systematic variation in the rate of inactivation of the electric organ Na(+) current shapes the electric organ discharge (EOD), a sexually dimorphic, androgen-sensitive communication signal. Here, we examine the relationship between an Na(+) channel (Na(v)1.4b), which has two splice forms, and the waveform of the EOD. One splice form (Na(v)1.4bL) possesses a novel first exon that encodes a 51 aa N-terminal extension. This is the first report of an Na(+) channel with alternative splicing in the N terminal. This N terminal is present in zebrafish suggesting its general importance in regulating Na(+) currents in teleosts. The extended N terminal significantly speeds fast inactivation, shifts steady-state inactivation, and dramatically enhances recovery from inactivation, essentially fulfilling the functions of a beta subunit. Both splice forms are equally expressed in muscle in electric fish and zebrafish but Na(v)1.4bL is the dominant form in the electric organ implying electric organ-specific transcriptional regulation. Transcript abundance of Na(v)1.4bL in the electric organ is positively correlated with EOD frequency and lowered by androgens. Thus, shaping of the EOD waveform involves the androgenic regulation of a rapidly inactivating splice form of an Na(+) channel. Our results emphasize the role of splicing in the regulation of a vertebrate Na(+) channel and its contribution to a known behavior.


Asunto(s)
Empalme Alternativo/genética , Andrógenos/fisiología , Comunicación Animal , Canales de Sodio/genética , Animales , Conducta Animal , Fenómenos Biofísicos , Biofisica , Pez Eléctrico , Órgano Eléctrico/citología , Órgano Eléctrico/metabolismo , Femenino , Peces , Activación del Canal Iónico/efectos de los fármacos , Activación del Canal Iónico/fisiología , Activación del Canal Iónico/efectos de la radiación , Masculino , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/genética , Potenciales de la Membrana/efectos de la radiación , Datos de Secuencia Molecular , Oocitos , Técnicas de Placa-Clamp/métodos , Prolina/genética , Estructura Terciaria de Proteína , Análisis de Secuencia de ADN , Transducción de Señal , Canales de Sodio/clasificación , Xenopus , Pez Cebra
18.
Biochim Biophys Acta Mol Basis Dis ; 1865(7): 1915-1924, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31109455

RESUMEN

We have previously shown that blockade of ATP-binding cassette transporter A1 (ABCA1) with cyclosporine A (CsA) stimulates the epithelial sodium channel (ENaC) in cultured distal nephron cells. Here we show that CsA elevated systolic blood pressure in both wild-type and apolipoprotein E (ApoE) knockout (KO) mice to a similar level. The elevated systolic blood pressure was completely reversed by inhibition of cholesterol (Cho) synthesis with lovastatin. Inside-out patch-clamp data show that intracellular Cho stimulated ENaC in cultured distal nephron cells by interacting with phosphatidylinositol­4,5­bisphosphate (PIP2), an ENaC activator. Confocal microscopy data show that both α­ENaC and PIP2 were localized in microvilli via a Cho-dependent mechanism. Deletion of membrane Cho reduced the levels of γ­ENaC in the apical membrane. Reduced ABCA1 expression and elevated intracellular Cho were observed in old mice, compared to young mice. In parallel, cell-attached patch-clamp data from the split-open cortical collecting ducts (CCD) show that ENaC activity was significantly increased in old mice. These data suggest that elevation of intracellular Cho due to blockade of ABCA1 stimulates ENaC, which may contribute to CsA-induced hypertension. This study also implies that reduced ABCA1 expression may mediate age-related hypertension by increasing ENaC activity via elevation of intracellular Cho.


Asunto(s)
Colesterol/metabolismo , Ciclosporina/efectos adversos , Inhibidores Enzimáticos/efectos adversos , Canales Epiteliales de Sodio/metabolismo , Hipertensión/inducido químicamente , Transportador 1 de Casete de Unión a ATP/antagonistas & inhibidores , Transportador 1 de Casete de Unión a ATP/metabolismo , Animales , Presión Sanguínea/efectos de los fármacos , Línea Celular , Hipertensión/metabolismo , Ratones , Ratones Endogámicos C57BL , Fosfatos de Fosfatidilinositol/metabolismo , Xenopus
19.
Br J Pharmacol ; 176(18): 3695-3711, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31222723

RESUMEN

BACKGROUND AND PURPOSE: We have shown that cholesterol is synthesized in the principal cells of renal cortical collecting ducts (CCD) and stimulates the epithelial sodium channels (ENaC). Here we have determined whether lovastatin, a cholesterol synthesis inhibitor, can antagonize the hypertension induced by activated ENaC, following deletion of the cholesterol transporter (ATP-binding cassette transporter A1; ABCA1). EXPERIMENTAL APPROACH: We selectively deleted ABCA1 in the principal cells of mouse CCD and used the cell-attached patch-clamp technique to record ENaC activity. Western blot and immunofluorescence staining were used to evaluate protein expression levels. Systolic BP was measured with the tail-cuff method. KEY RESULTS: Specific deletion of ABCA1 elevated BP and ENaC single-channel activity in the principal cells of CCD in mice. These effects were antagonized by lovastatin. ABCA1 deletion elevated intracellular cholesterol levels, which was accompanied by elevated ROS, increased expression of serum/glucocorticoid regulated kinase 1 (Sgk1), phosphorylated neural precursor cell-expressed developmentally down-regulated protein 4-2 (Nedd4-2) and furin, along with shorten the primary cilium, and reduced ATP levels in urine. CONCLUSIONS AND IMPLICATIONS: These data suggest that specific deletion of ABCA1 in principal cells increases BP by stimulating ENaC channels via a cholesterol-dependent pathway which induces several secondary responses associated with oxidative stress, activated Sgk1/Nedd4-2, increased furin expression, and reduced cilium-mediated release of ATP. As ABCA1 can be blocked by cyclosporine A, these results suggest further investigation of the possible use of statins to treat CsA-induced hypertension.


Asunto(s)
Transportador 1 de Casete de Unión a ATP/genética , Antihipertensivos/uso terapéutico , Bloqueadores del Canal de Sodio Epitelial/uso terapéutico , Hipertensión/tratamiento farmacológico , Lovastatina/uso terapéutico , Animales , Anticolesterolemiantes/farmacología , Antihipertensivos/farmacología , Bloqueadores del Canal de Sodio Epitelial/farmacología , Canales Epiteliales de Sodio/fisiología , Hipertensión/metabolismo , Hipertensión/fisiopatología , Túbulos Renales/metabolismo , Lovastatina/farmacología , Masculino , Ratones Noqueados
20.
Oxid Med Cell Longev ; 2018: 7560610, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30622672

RESUMEN

Previous studies indicate that the epithelial sodium channel (ENaC) in the kidney is upregulated in diabetes mellitus. Here, we show that ENaC single-channel activity in distal nephron cells was significantly increased by palmitate, a free fatty acid which is elevated in diabetes mellitus. We also show that palmitate increased intracellular Ca2+ and that after chelating intracellular Ca2+ with BAPTA-AM, palmitate failed to affect ENaC activity. Treatment of the cells with 2-aminoethoxydiphenyl borate (2-APB, an inhibitor of IP3 receptors) abolished the elevation of both intracellular Ca2+ and ENaC activity. Treatment of the cells with apocynin (an NADPH oxidase inhibitor), dithiothreitol/NaHS (reducing agents), or LY294002 (a phosphoinositide 3-kinase (PI3K) inhibitor) prevented palmitate-induced ENaC activity, whereas thimerosal (an oxidizing agent) mimicked the effects of palmitate on ENaC activity. However, these treatments did not alter the levels of intracellular Ca2+, indicating that elevation of reactive oxygen species (ROS) and activation of PI3K are downstream of the signaling cascade. Since we have shown that ROS stimulate ENaC by activating PI3K, these data together suggest that palmitate first elevates intracellular Ca2+, then activates an NADPH oxidase to elevate intracellular ROS and PI3K activity, and finally increases ENaC activity via the activated PI3K.


Asunto(s)
Calcio/metabolismo , Canales Epiteliales de Sodio/metabolismo , Palmitatos/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA