Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Appl Clin Med Phys ; 22(1): 318-326, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33369008

RESUMEN

PURPOSE: This study aims to evaluate the performance of four artificial intelligence-aided diagnostic systems in identifying and measuring four types of pulmonary nodules. METHODS: Four types of nodules were implanted in a commercial lung phantom. The phantom was scanned with multislice spiral computed tomography, after which four systems (A, B, C, D) were used to identify the nodules and measure their volumes. RESULTS: The relative volume error (RVE) of system A was the lowest for all nodules, except for small ground glass nodules (SGGNs). System C had the smallest RVE for SGGNs, -0.13 (-0.56, 0.00). In the Bland-Altman test, only systems A and C passed the consistency test, P = 0.40. In terms of precision, the miss rate (MR) of system C was 0.00% for small solid nodules (SSNs), ground glass nodules (GGNs), and solid nodules (SNs) but 4.17% for SGGNs. The comparable system D MRs for SGGNs, SSNs, and GGNs were 71.30%, 25.93%, and 47.22%, respectively, the highest among all the systems. Receiver operating characteristic curve analysis indicated that system A had the best performance in recognizing SSNs and GGNs, with areas under the curve of 0.91 and 0.68. System C had the best performance for SGGNs (AUC = 0.91). CONCLUSION: Among four types nodules, SGGNs are the most difficult to recognize, indicating the need to improve higher accuracy and precision of artificial systems. System A most accurately measured nodule volume. System C was most precise in recognizing all four types of nodules, especially SGGN.


Asunto(s)
Neoplasias Pulmonares , Nódulos Pulmonares Múltiples , Nódulo Pulmonar Solitario , Inteligencia Artificial , Humanos , Neoplasias Pulmonares/diagnóstico por imagen , Nódulos Pulmonares Múltiples/diagnóstico por imagen , Nódulo Pulmonar Solitario/diagnóstico por imagen , Tomografía Computarizada por Rayos X
2.
BMC Complement Altern Med ; 19(1): 109, 2019 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-31122236

RESUMEN

BACKGROUND: Berberine is an isoquinoline alkaloid extracted from various Berberis species which is widely used in East Asia for a wide range of symptoms. Recently, neuroprotective effects of berberine in Alzheimer's disease (AD) animal models are being extensively reported. So far, no clinical trial has been carried out on the neuroprotective effects of berberine. However, a review of the experimental data is needed before choosing berberine as a candidate drug for clinical experiments. We conducted a systematic review on AD rodent models to analyze the drug effects with minimal selection bias. METHODS: Five online literature databases were searched to find publications reporting studies of the effect of berberine treatment on animal models of AD. Up to March 2018, 15 papers were identified to describe the efficacy of berberine. RESULTS: The included 15 articles met our inclusion criteria with different quality ranging from 3 to 5. We analyzed data extracted from full texts with regard to pharmacological effects and potential anti-Alzheimer's properties. Our analysis revealed that in multiple memory defects animal models, berberine showed significant memory-improving activities with multiple mechanisms, such as anti-inflammation, anti-oxidative stress, cholinesterase (ChE) inhibition and anti-amyloid effects. CONCLUSION: AD is likely to be a complex disease driven by multiple factors. Yet, many therapeutic strategies based on lowering ß-amyloid have failed in clinical trials. This suggest that the threapy should not base on a single cause of Alzheimer's disease but rather a number of different pathways that lead to the disease. Overall we think that berberine can be a promising multipotent agent to combat Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Berberina , Fármacos Neuroprotectores , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/fisiopatología , Animales , Berberina/química , Berberina/farmacología , Berberina/uso terapéutico , Modelos Animales de Enfermedad , Ratones , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Ratas
3.
BMC Ophthalmol ; 17(1): 48, 2017 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-28431514

RESUMEN

BACKGROUND: Matrix metalloproteinases (MMPs) polymorphisms have been implicated in the pathogenesis of glaucoma risk. However, the results were controversial. We performed a meta-analysis to evaluate the precise associations between MMPs polymorphisms and glaucoma risk. METHODS: Related studies were reviewed by searching electronic databases within four databases. Odds ratios (ORs) with 95% confidence intervals (CIs) were calculated to assess the association between the most common polymorphisms of MMPs and glaucoma risk. Heterogeneity, publication bias and sensitivity analysis were conducted to guarantee the statistical power. RESULTS: Overall, 11 selected articles involving 2,388 cases and 2,319 controls were included in this meta-analysis. Significant associations were only found between MMP-9 rs17576 G > A polymorphism (GA vs. GG: OR = 0.80, 95%CI = 0.67-0.97, P = 0.02, I2 = 0%), MMP-9 rs3918249 C > T polymorphism (TT vs. CC + CT: OR = 0.71, 95%CI = 0.51-0.98, P = 0.04, I2 = 0%) and glaucoma risk in the general population. Subgroup analysis also suggested that MMP-9 rs17576 G > A was related to glaucoma in the Caucasian population (GA vs. GG: OR = 0.67, 95%CI = 0.45-1.00, P = 0.05; GA + AA vs. GG: OR = 0.66, 95%CI = 0.45-0.97, P = 0.03, I2 = 0%). CONCLUSIONS: Our meta-analysis demonstrates that MMP-9 rs17576 G > A polymorphism might be a protective factor against the development of glaucoma in Caucasian population.


Asunto(s)
Predisposición Genética a la Enfermedad , Glaucoma/genética , Metaloproteinasas de la Matriz/genética , Polimorfismo de Nucleótido Simple , Genotipo , Glaucoma/enzimología , Humanos , Factores de Riesgo
4.
Microb Cell Fact ; 15: 54, 2016 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-27039899

RESUMEN

BACKGROUND: Trehalose is related to several types of stress responses, especially freezing response in baker's yeast (Saccharomyces cerevisiae). It is desirable to manipulate trehalose-related genes to create yeast strains that better tolerate freezing-thaw stress with improved fermentation capacity, which are in high demand in the baking industry. RESULTS: The strain overexpressing MAL62 gene showed increased trehalose content and cell viability after prefermention-freezing and long-term frozen. Deletion of NTH1 in combination of MAL62 overexpression further strengthens freezing tolerance and improves the leavening ability after freezing-thaw stress. CONCLUSIONS: The mutants of the industrial baker's yeast with enhanced freezing tolerance and leavening ability in lean dough were developed by genetic engineering. These strains had excellent potential industrial applications.


Asunto(s)
Aclimatación/genética , Fermentación/genética , Congelación , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Trehalasa/genética , alfa-Glucosidasas/genética , Frío , Harina/microbiología , Eliminación de Gen , Regulación Fúngica de la Expresión Génica , Organismos Modificados Genéticamente , Regulación hacia Arriba/genética
5.
Angew Chem Int Ed Engl ; 54(32): 9409-13, 2015 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-26136346

RESUMEN

The first highly diastereo- and enantioselective multicomponent reaction of diazooxindoles, nitrosoarenes, and nitroalkenes using a newly developed hydrogen-bond catalyst has been successfully developed for the efficient construction of a series of spirooxindole derivatives with excellent functional-group tolerance. Spirooxindoles are formed in excellent yields and stereoselectivities, and the method represents an unprecedented approach for trapping the active intermediate with a nitroalkene to form biologically important compounds having three contiguous stereogenic centers with excellent asymmetric induction.


Asunto(s)
Indoles/química , Compuestos de Espiro/química , Catálisis , Enlace de Hidrógeno , Indoles/síntesis química , Estereoisomerismo , Tiourea/química
6.
Tumour Biol ; 35(4): 3891-7, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24343338

RESUMEN

The associations between CYP1B1 polymorphisms and head and neck squamous cell carcinoma (HNSCC) risk have been conflicting. We therefore performed a meta-analysis to derive a more precise relationship. Six published case-control studies were collected; odds ratios (ORs) with 95% confidence interval (CI) were used to assess the association between CYP1B1 Leu432Val, Asn453Ser polymorphisms, and HNSCC risk. The Sensitivity analysis and publication bias also were performed to guarantee the statistical power. Overall, the pooled OR with 95% CIs indicated that CYP1B1 Leu432Val polymorphism was significantly related with HNSCC risk (for Val vs. Leu: OR = 1.13, 95% CI = 1.03-1.25, P = 0.014, P(heterogeneity) = 0.141; for Val/Val vs. Leu/Leu: OR = 1.30, 95% CI = 1.06-1.60, P = 0.013, P heterogeneity = 0.253; for Val/Val vs. Leu/Leu + Leu/Val: OR = 1.23, 95% CI = 1.05-1.46, P = 0.013, P(heterogeneity) = 0.456). The similar results were also been found in succeeding analysis of HWE and stratified analysis of Caucasian population. Furthermore, no significant association between CYP1B1 Asn453Ser polymorphism and HNSCC risk was found in this meta-analysis. In conclusion, our meta-analysis demonstrates that CYP1B1 Leu432Val polymorphism may be a risk factor for developing HNSCC.


Asunto(s)
Hidrocarburo de Aril Hidroxilasas/genética , Carcinoma de Células Escamosas/genética , Predisposición Genética a la Enfermedad , Neoplasias de Cabeza y Cuello/genética , Polimorfismo Genético , Estudios de Casos y Controles , Citocromo P-450 CYP1B1 , Humanos , Sesgo de Publicación , Riesgo , Carcinoma de Células Escamosas de Cabeza y Cuello
7.
Biotechnol Appl Biochem ; 61(6): 707-15, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24527770

RESUMEN

Mutants with overexpression of α-acetolactate synthase (ALS), α-acetolactate decarboxylase, and acetoin reductase (AR), either individually or in combination, were constructed to improve 2,3-butanediol (2,3-BD) production in Klebsiella pneumoniae. The recombinant strains were characterized in terms of the enzyme activity, 2,3-BD yield, and expression levels. The recombinant K. pneumoniae strain (KG-rs) that overexpressed both ALS and AR showed an improved 2,3-BD yield. When cultured in the media with five different carbon sources (glucose, galactose, fructose, sucrose, and lactose), the mutant exhibited higher 2,3-BD productivity and production than the parental strain in all the tested carbon sources except for lactose. The 2,3-BD production of KG-rs in a batch fermentation with glucose as the carbon source was 12% higher than that of the parental strain.


Asunto(s)
Acetolactato Sintasa/biosíntesis , Oxidorreductasas de Alcohol/biosíntesis , Butileno Glicoles/síntesis química , Carbono/metabolismo , Acetolactato Sintasa/genética , Oxidorreductasas de Alcohol/genética , Butileno Glicoles/química , Fermentación , Regulación Bacteriana de la Expresión Génica , Klebsiella pneumoniae/enzimología , Klebsiella pneumoniae/genética , Lactatos/química , Mutación
8.
Angew Chem Int Ed Engl ; 53(14): 3684-7, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24591330

RESUMEN

A highly efficient strategy for the kinetic resolution of axially chiral BINAM derivatives involving a chiral Brønsted acid-catalyzed imine formation and transfer hydrogenation cascade process was developed. The kinetic resolution provides a convenient route to chiral BINAM derivatives in high yields with excellent enantioselectivities.

9.
Int J Biol Sci ; 20(2): 751-764, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38169614

RESUMEN

Autophagy is a highly conserved physiological process that maintains cellular homeostasis by recycling cellular contents. Selective autophagy is based on the specificity of cargo recognition and has been implicated in various human diseases, including neurodegenerative diseases and cancer. Selective autophagy receptors and modulators play key roles in this process. Identifying these receptors and modulators and their roles is critical for understanding the machinery and physiological function of selective autophagy and providing therapeutic value for diseases. Using modern researching tools and novel screening technologies, an increasing number of selective autophagy receptors and modulators have been identified. A variety of Strategies and approaches, including protein-protein interactions (PPIs)-based identification and genome-wide screening, have been used to identify selective autophagy receptors and modulators. Understanding the strengths and challenges of these approaches not only promotes the discovery of even more such receptors and modulators but also provides a useful reference for the identification of regulatory proteins or genes involved in other cellular mechanisms. In this review, we summarize the functions, disease association, and identification strategies of selective autophagy receptors and modulators.


Asunto(s)
Autofagia , Humanos , Autofagia/genética , Homeostasis
10.
Autophagy ; 20(6): 1442-1443, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38311819

RESUMEN

LC3-associated phagocytosis (LAP) is an instrumental machinery for the clearance of extracellular particles including apoptotic cells for the alleviation of inflammation. While pharmacological approaches to modulate LAP for inflammation regulation have been poorly explored, in our study we identified a novel compound, columbamine (COL), which can trigger LAP and enhance efferocytosis in an animal model of colitis to attenuate inflammation. We found that COL directly binds to and biasedly activates FPR2 (formyl peptide receptor 2) to promote efferocytosis and alleviate colitis. Biochemically, COL induces an interaction between RAC1 and the PIK3C3/VPS34-RUBCN/RUBICON complex, stimulating LC3-associated efferocytosis. These findings provide a novel interpretation of the potential roles of LAP in regulating inflammatory bowel disease (IBD), reveal the relationship between G protein-coupled receptors (GPCRs) and LAP, and highlight the role of RAC1 in regulating the PIK3C3/VPS34-RUBCN complex in LAP.


Asunto(s)
Colitis , Inflamación , Fagocitosis , Proteína de Unión al GTP rac1 , Animales , Fagocitosis/efectos de los fármacos , Proteína de Unión al GTP rac1/metabolismo , Inflamación/patología , Humanos , Colitis/patología , Colitis/metabolismo , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Receptores de Formil Péptido/metabolismo , Ratones Endogámicos C57BL , Receptores de Lipoxina/metabolismo , Intestinos/patología , Eferocitosis
11.
Burns Trauma ; 11: tkad004, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37152076

RESUMEN

Inflammatory bowel disease (IBD) is a chronic, non-specific, recurrent inflammatory disease, majorly affecting the gastrointestinal tract. Due to its unclear pathogenesis, the current therapeutic strategy for IBD is focused on symptoms alleviation. Autophagy is a lysosome-mediated catabolic process for maintaining cellular homeostasis. Genome-wide association studies and subsequent functional studies have highlighted the critical role of autophagy in IBD via a number of mechanisms, including modulating macrophage function. Macrophages are the gatekeepers of intestinal immune homeostasis, especially involved in regulating inflammation remission and tissue repair. Interestingly, many autophagic proteins and IBD-related genes have been revealed to regulate macrophage function, suggesting that macrophage autophagy is a potentially important process implicated in IBD regulation. Here, we have summarized current understanding of macrophage autophagy function in pathogen and apoptotic cell clearance, inflammation remission and tissue repair regulation in IBD, and discuss how this knowledge can be used as a strategy for IBD treatment.

12.
EMBO Mol Med ; 15(12): e17815, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-37994307

RESUMEN

Efficient clearance of dying cells (efferocytosis) is an evolutionarily conserved process for tissue homeostasis. Genetic enhancement of efferocytosis exhibits therapeutic potential for inflammation resolution and tissue repair. However, pharmacological approaches to enhance efferocytosis remain sparse due to a lack of targets for modulation. Here, we report the identification of columbamine (COL) which enhances macrophage-mediated efferocytosis and attenuates intestinal inflammation in a murine colitis model. COL enhances efferocytosis by promoting LC3-associated phagocytosis (LAP), a non-canonical form of autophagy. Transcriptome analysis and pharmacological characterization revealed that COL is a biased agonist that occupies a part of the ligand binding pocket of formyl peptide receptor 2 (FPR2), a G-protein coupled receptor involved in inflammation regulation. Genetic ablation of the Fpr2 gene or treatment with an FPR2 antagonist abolishes COL-induced efferocytosis, anti-colitis activity and LAP. Taken together, our study identifies FPR2 as a potential target for modulating LC3-associated efferocytosis to alleviate intestinal inflammation and highlights the therapeutic value of COL, a natural and biased agonist of FPR2, in the treatment of inflammatory bowel disease.


Asunto(s)
Colitis , Ratones , Animales , Fagocitosis , Transducción de Señal , Inflamación/genética , Macrófagos/metabolismo , Colitis/metabolismo
13.
Theranostics ; 12(4): 1738-1755, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35198070

RESUMEN

Rationale: Impairment of autophagy maturation has been implicated in Alzheimer's disease (AD) pathogenesis. However, the mechanism for this impairment has not been elucidated, and whether enhancing autophagy maturation is a viable therapeutic strategy for AD has not been verified. Methods: We examined the autophagosome maturation process in AD cell and mouse models by immunoblotting. To further understand the changes in autophagy in AD brains, we analyzed the transcriptome by RNA-sequencing and measured the expression of RAB7, CCZ1 and MON1A. We performed brain stereotaxic injections of AAV into 3xTg AD mouse brain and WT mouse brain to over-express MON1A/CCZ1 or knockdown MON1A. For in vitro studies, we purified autophagosomes, and determined GTP-RAB7 level in autophagosome fractions by GST-R7BD affinity-isolation assay. Results: We report that the active form of RAB7 was selectively decreased in autophagosome fractions isolated from cells and tissues of AD models, and that this decrease was accompanied by impaired activity of its guanine nucleotide exchange factor (GFE) CCZ1-MON1A. Overexpressing CCZ1-MON1A increased the active form of RAB7, enhanced autophagosome maturation, and promoted degradation of APP-CTFs, Aß and P-tau in an autophagy-dependent manner in cells and a mouse AD model. Conclusions: Our data reveals that CCZ1-MON1A-RAB7 complex dysfunction is a potential mechanism for autophagosome maturation defects in AD, and advances the possibility that enhancing autophagosome maturation is a novel therapeutic strategy against AD.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Animales , Autofagosomas/metabolismo , Autofagia , Modelos Animales de Enfermedad , Factores de Intercambio de Guanina Nucleótido , Ratones
14.
Cells ; 10(10)2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34685633

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disease with a high incidence in the elderly. Many preclinical studies show that a natural product, ferulic acid (FA), displays neuroprotective effects in AD models. This review aims to systematically review and meta-analyze published pre-clinical researches about the effects, mechanism, and clinical prospects of FA in the treatment of AD. According to the pre-determined search strategy and inclusion criteria, a total of 344 animals in 12 papers were included in the meta-analysis. We used the fixed effects model to analyze data and I2 and p values to indicate heterogeneity. Results show that FA treatment can effectively improve rodents' spatial memory ability in MWM and Y maze experiments (I2 ≥ 70, p < 0.005), and reduce the deposition of Aß in the brains of various model animals (I2 ≥ 50, p < 0.005). The potential mechanisms include anti-amyloidogenesis, anti-inflammation, anti-oxidation, mitochondrial protection, and inhibition of apoptosis. In conclusion, we systematically review and meta-analyze the literature reporting the effects of FA treatment on AD rodent models and solidify the benefits of FA in reducing Aß deposition and improving memory in preclinical experiments. We also point out the limitations in the current research design and provide a strategy for the production research of FA in the future.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Ácidos Cumáricos/uso terapéutico , Péptidos beta-Amiloides/metabolismo , Animales , Conducta Animal , Modelos Animales de Enfermedad , Aprendizaje por Laberinto , Publicaciones
15.
Curr Biol ; 31(15): 3315-3329.e5, 2021 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-34146485

RESUMEN

In the spinal cord, cerebrospinal fluid-contacting neurons (CSF-cNs) are GABAergic interoceptive sensory neurons that detect spinal curvature via a functional coupling with the Reissner fiber. This mechanosensory system has recently been found to be involved in spine morphogenesis and postural control but the underlying mechanisms are not fully understood. In zebrafish, CSF-cNs project an ascending and ipsilateral axon reaching two to six segments away. Rostralmost CSF-cNs send their axons ipsilaterally into the hindbrain, a brain region containing motor nuclei and reticulospinal neurons (RSNs), which send descending motor commands to spinal circuits. Until now, the synaptic connectivity of CSF-cNs has only been investigated in the spinal cord, where they synapse onto motor neurons and premotor excitatory interneurons. The identity of CSF-cN targets in the hindbrain and the behavioral relevance of these sensory projections from the spinal cord to the hindbrain are unknown. Here, we provide anatomical and molecular evidence that rostralmost CSF-cNs synapse onto the axons of large RSNs including Mauthner cells and V2a neurons. Functional anatomy and optogenetically assisted mapping reveal that rostral CSF-cNs also synapse onto the soma and dendrites of cranial motor neurons innervating hypobranchial muscles. During acousto-vestibular evoked escape responses, ablation of rostralmost CSF-cNs results in a weaker escape response with a decreased C-bend amplitude, lower speed, and deficient postural control. Our study demonstrates that spinal sensory feedback enhances speed and stabilizes posture, and reveals a novel spinal gating mechanism acting on the output of descending commands sent from the hindbrain to the spinal cord.


Asunto(s)
Actividad Motora/fisiología , Rombencéfalo , Células Receptoras Sensoriales , Médula Espinal/citología , Pez Cebra , Animales , Rombencéfalo/fisiología , Células Receptoras Sensoriales/fisiología
16.
Acta Pharm Sin B ; 11(11): 3364-3378, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34900523

RESUMEN

As a cellular bulk degradation and survival mechanism, autophagy is implicated in diverse biological processes. Genome-wide association studies have revealed the link between autophagy gene polymorphisms and susceptibility of autoimmune diseases including systemic lupus erythematosus (SLE) and inflammatory bowel disease (IBD), indicating that autophagy dysregulation may be involved in the development of autoimmune diseases. A series of autophagy modulators have displayed protective effects on autoimmune disease models, highlighting the emerging role of autophagy modulators in treating autoimmune diseases. This review explores the roles of autophagy in the autoimmune diseases, with emphasis on four major autoimmune diseases [SLE, rheumatoid arthritis (RA), IBD, and experimental autoimmune encephalomyelitis (EAE)]. More importantly, the therapeutic potentials of small molecular autophagy modulators (including autophagy inducers and inhibitors) on autoimmune diseases are comprehensively analyzed.

17.
Autophagy ; 17(5): 1112-1130, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-32543313

RESUMEN

NRBF2 is a component of the class III phosphatidylinositol 3-kinase (PtdIns3K) complex. Our previous study has revealed its role in regulating ATG14-associated PtdIns3K activity for autophagosome initiation. In this study, we revealed an unknown mechanism by which NRBF2 modulates autophagosome maturation and APP-C-terminal fragment (CTF) degradation. Our data showed that NRBF2 localized at autolysosomes, and loss of NRBF2 impaired autophagosome maturation. Mechanistically, NRBF2 colocalizes with RAB7 and is required for generation of GTP-bound RAB7 by interacting with RAB7 GEF CCZ1-MON1A and maintaining the GEF activity. Specifically, NRBF2 regulates CCZ1-MON1A interaction with PI3KC3/VPS34 and CCZ1-associated PI3KC3 kinase activity, which are required for CCZ1-MON1A GEF activity. Finally, we showed that NRBF2 is involved in APP-CTF degradation and amyloid beta peptide production by maintaining the interaction between APP and the CCZ1-MON1A-RAB7 module to facilitate the maturation of APP-containing vesicles. Overall, our study revealed a pivotal role of NRBF2 as a new RAB7 effector in modulating autophagosome maturation, providing insight into the molecular mechanism of NRBF2-PtdIns3K in regulating RAB7 activity for macroautophagy/autophagy maturation and Alzheimer disease-associated protein degradation..Abbreviations: 3xTg AD, triple transgenic mouse for Alzheimer disease; Aß, amyloid beta peptide; Aß1-40, amyloid beta peptide 1-40; Aß1-42, amyloid beta peptide 1-42; AD, Alzheimer disease; APP, amyloid beta precursor protein; APP-CTFs, APP C-terminal fragments; ATG, autophagy related; ATG5, autophagy related 5; ATG7, autophagy related 7; ATG14, autophagy related 14; CCD, coiled-coil domain; CCZ1, CCZ1 homolog, vacuolar protein trafficking and biogenesis associated; CHX, cycloheximide; CQ, chloroquine; DAPI, 4',6-diamidino-2-phenylindole; dCCD, delete CCD; dMIT, delete MIT; FYCO1, FYVE and coiled-coil domain autophagy adaptor 1; FYVE, Fab1, YGL023, Vps27, and EEA1; GAP, GTPase-activating protein; GDP, guanine diphosphate; GEF, guanine nucleotide exchange factor; GTP, guanine triphosphate; GTPase, guanosine triphosphatase; HOPS, homotypic fusion and vacuole protein sorting; ILVs, endosomal intralumenal vesicles; KD, knockdown; KO, knockout; LAMP1, lysosomal associated membrane protein 1; MAP1LC3/LC3, microtubule associated protein 1 light chain 3; MLVs, multilamellar vesicles; MON1A, MON1 homolog A, secretory trafficking associated; NRBF2, nuclear receptor binding factor 2; PtdIns3K, class III phosphatidylinositol 3-kinase; PtdIns3P, phosphatidylinositol-3-phosphate; RILP, Rab interacting lysosomal protein; SNARE, soluble N-ethylmaleimide-sensitive factor attachment protein receptor; SQSTM1/p62, sequestosome 1; UVRAG, UV radiation resistance associated; VPS, vacuolar protein sorting; WT, wild type.


Asunto(s)
Autofagosomas/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Autofagia/fisiología , Transactivadores/metabolismo , Proteínas de Unión a GTP rab7/metabolismo , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Autofagosomas/genética , Proteínas Relacionadas con la Autofagia/genética , Endosomas/metabolismo , Lisosomas/metabolismo , Ratones , Transactivadores/genética , Proteínas de Unión a GTP rab7/genética
18.
Autophagy ; 17(5): 1096-1111, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-32160108

RESUMEN

NRBF2, a regulatory subunit of the ATG14-BECN1/Beclin 1-PIK3C3/VPS34 complex, positively regulates macroautophagy/autophagy. In this study, we report that NRBF2 is required for the clearance of apoptotic cells and alleviation of inflammation during colitis in mice. NRBF2-deficient mice displayed much more severe colitis symptoms after the administration of ulcerative colitis inducer, dextran sulfate sodium salt (DSS), accompanied by prominent intestinal inflammation and apoptotic cell accumulation. Interestingly, we found that nrbf2-/- mice and macrophages displayed impaired apoptotic cell clearance capability, while adoptive transfer of nrbf2+/+ macrophages to nrbf2-/- mice alleviated DSS-induced colitis lesions. Mechanistically, NRBF2 is required for the generation of the active form of RAB7 to promote the fusion between phagosomes containing engulfed apoptotic cells and lysosomes via interacting with the MON1-CCZ1 complex and regulating the guanine nucleotide exchange factor (GEF) activity of the complex. Evidence from clinical samples further reveals the physiological role of NRBF2 in maintaining intestinal homeostasis. In biopsies of UC patient colon, we observed upregulated NRBF2 in the colon macrophages and the engulfment of apoptotic cells by NRBF2-positive cells, suggesting a potential protective role for NRBF2 in UC. To confirm the relationship between apoptotic cell clearance and IBD development, we compared TUNEL-stained cell counts in the UC with UC severity (Mayo Score) and observed a strong correlation between the two indexes, indicating that apoptotic cell population in colon tissue correlates with UC severity. The findings of our study reveal a novel role for NRBF2 in regulating apoptotic cell clearance to restrict intestinal inflammation.Abbreviation: ANOVA: analysis of variance; ATG14: autophagy related 14; ATG16L1: autophagy related 16-like 1 (S. cerevisiae); BMDM: bone marrow-derived macrophage; BSA: bovine serum albumin; CD: Crohn disease; CD68: CD68 molecule; CFP: cyan fluorescent protein; CMFDA: 5-chloromethylfluorescein diacetate; Co-IP, co-immunoprecipitation; CPR: C-reactive protein; Cy7: cyanine 7 maleimide; DAB: diaminobezidine 3; DAI: disease activity indexes; DAPI: 4'6-diamidino-2-phenylindole; DMEM: dulbecco's modified eagle's medium; DMSO: dimethyl sulfoxide; DOC: sodium deoxycholate; DSS: dextran sulfate sodium; EDTA: ethylenediaminetetraacetic acid; EGTA: ethylenebis (oxyethylenenitrilo) tetraacetic acid; FBS: fetal bovine serum; FITC: fluorescein isothiocyanate; FRET: Förster resonance energy transfer; GDP: guanine dinucleotide phosphate; GEF: guanine nucleotide exchange factor; GFP: green fluorescent protein; GTP: guanine trinucleotide phosphate; GWAS: genome-wide association studies; HEK293: human embryonic kidney 293 cells; HRP: horseradish peroxidase; IBD: inflammatory bowel disease; IgG: immunoglobin G; IL1B/IL-1ß: interleukin 1 beta; IL6: interleukin 6; IRGM: immunity related GTPase M; ITGAM/CD11b: integrin subunit alpha M; KO: knockout; LRRK2: leucine rich repeat kinase 2; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MOI: multiplicity of infection; MPO: myeloperoxidase; NaCl: sodium chloride; NEU: neutrophil; NOD2: nucleotide binding oligomerization domain containing 2; NP40: nonidet-P40; NRBF2: nuclear receptor binding factor 2; PBS: phosphate buffer saline; PCR: polymerase chain reaction; PE: P-phycoerythrin; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; PtdIns3P: phosphatidylinositol-3-phosphate; PTPRC/CD45: protein tyrosine phosphatase receptor type C; SDS-PAGE: sodium dodecylsulphate-polyacrylamide gel electrophoresis; TBST: tris-buffered saline Tween-20; Tris-HCl: trihydroxymethyl aminomethane hydrochloride; TUNEL: TdT-mediated dUTP nick-end labeling; UC: ulcerative colitis; ULK1: unc-51 like autophagy activating kinase 1; WB: western blotting; WT: wild type; YFP: yellow fluorescent protein.


Asunto(s)
Apoptosis , Proteínas Relacionadas con la Autofagia , Autofagia , Inflamación , Transactivadores , Animales , Humanos , Apoptosis/fisiología , Proteínas Reguladoras de la Apoptosis/metabolismo , Autofagia/fisiología , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Inflamación/metabolismo , Lisosomas/metabolismo , Fagosomas/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Ratones
19.
Zhen Ci Yan Jiu ; 45(8): 645-51, 2020 Aug 25.
Artículo en Zh | MEDLINE | ID: mdl-32869575

RESUMEN

OBJECTIVE: To compare the analgesic effect of manual acupuncture(MA) stimulation of "Zusanli" (ST36) in rats with inflammatory pain under unrestrained conscious, restrained and general anesthesia conditions, so as to explore the applicability of unrestrained conscious model in the evaluation of acupuncture analgesia effect. METHODS: Male SD rats were divided into 5 groups: blank control (n=9), pain model (n=7), unrestrained conscious conditions+MA (n=6), restrained conditions+MA (n=6), and general anesthesia (GA)+MA(n=6). The acute pain model was established by injection of complete Freund's adjuvant (CFA) into the left ankle joint 48 h ahead of acupuncture. Subsequently, a single 20 min session of MA was applied to the left ST36. The mechanical and thermal pain thresholds (MPT and TPT) were determined before and after injection of CFA, and after MA stimulation. In order to evaluate the autonomic behavior activities, rats were randomly divided into blank control (n=11), pain model (n=11) and conscious-unrestrained conditions +MA (n=12) groups. The rats' exploratory movements were assessed by open field tests. RESULTS: Both MPT and TPT were significantly decreased after injection of CFA in the model group relevant to the blank control group (P<0.001), and significantly higher in the three MA groups than in the model group (P<0.001). Comparison among the three MA groups showed that both MPT and TPT were significantly higher in the conscious unrestrained conditions+MA group than in the restrained conditions+MA and GA+MA groups (P<0.05, P<0.01). Open filed tests showed that the total moving distance in the open field and wall climbing times were significantly lower in the model group than in the blank control group (P<0.01), and the wall climbing times were obviously more in the unstrained conditions+MA group than in the model group (P<0.05). The central area resistance time was significantly shorter in the model group than in the control group (P<0.05), and was moderately increased after MA despite no evident significance (P>0.05). No significant changes were found in the total moving distance after MA and in the central area moving distance after modeling and MA (P>0.05). CONCLUSION: MA has a better therapeutic effect in relieving pain and pain-induced depression-like behavior in conscious unrestrained rats than in restrained and GA rats, implying a higher applicability of unrestrained conscious pain model to the assessment of acupuncture analgesia.


Asunto(s)
Analgesia por Acupuntura , Electroacupuntura , Puntos de Acupuntura , Animales , Extremidad Inferior , Masculino , Dolor , Ratas , Ratas Sprague-Dawley
20.
Cell Death Dis ; 11(2): 128, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-32071296

RESUMEN

Autophagy, a conserved cellular degradation and recycling process, can be enhanced by nutrient depletion, oxidative stress or other harmful conditions to maintain cell survival. 6-Hydroxydopamine/ascorbic acid (6-OHDA/AA) is commonly used to induce experimental Parkinson's disease (PD) lesions by causing oxidative damage to dopaminergic neurons. Activation of autophagy has been observed in the 6-OHDA-induced PD models. However, the mechanism and exact role of autophagy activation in 6-OHDA PD model remain inconclusive. In this study, we report that autophagy was triggered via mucolipin 1/calcium/calcineurin/TFEB (transcription factor EB) pathway upon oxidative stress induced by 6-OHDA/AA. Interestingly, overexpression of TFEB alleviated 6-OHDA/AA toxicity. Moreover, autophagy enhancers, Torin1 (an mTOR-dependent TFEB/autophagy enhancer) and curcumin analog C1 (a TFEB-dependent and mTOR-independent autophagy enhancer), significantly rescued 6-OHDA/AA-induced cell death in SH-SY5Y cells, iPSC-derived DA neurons and mice nigral DA neurons. The behavioral abnormality of 6-OHDA/AA-treated mice can also be rescued by Torin 1 or C1 administration. The protective effects of Torin 1 and C1 can be blocked by autophagy inhibitors like chloroquine (CQ) or by knocking down autophagy-related genes TFEB and ATG5. Taken together, this study supports that TFEB-mediated autophagy is a survival mechanism during oxidative stress and pharmacological enhancement of this process is a neuroprotective strategy against oxidative stress-associated PD lesions.


Asunto(s)
Antiparkinsonianos/farmacología , Autofagia/efectos de los fármacos , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Encéfalo/efectos de los fármacos , Curcumina/farmacología , Neuronas Dopaminérgicas/efectos de los fármacos , Naftiridinas/farmacología , Estrés Oxidativo/efectos de los fármacos , Trastornos Parkinsonianos/tratamiento farmacológico , Animales , Ácido Ascórbico , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Conducta Animal/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Línea Celular Tumoral , Curcumina/análogos & derivados , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Femenino , Humanos , Ratones Endogámicos C57BL , Mitofagia/efectos de los fármacos , Oxidopamina , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/patología , Transducción de Señal , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA