RESUMEN
Leukocyte cell-derived chemotaxin 2 (LECT2) acts as a tumor suppressor in hepatocellular carcinoma (HCC). However, the antineoplastic mechanism of LECT2, especially its influence on hepatic cancer stem cells (CSCs), remains largely unknown. In The Cancer Genome Atlas cohort, LECT2 mRNA expression was shown to be associated with stage, grade, recurrence, and overall survival in human HCC patients, and LECT2 expression was downregulated in hepatoma tissues compared with the adjacent nontumoral liver. Here, we show by immunofluorescence and immunoblot analyses that LECT2 was expressed at lower levels in tumors and in poorly differentiated HCC cell lines. Using functional assays, we also found LECT2 was capable of suppressing oncogenic behaviors such as cell proliferation, anchorage-independent growth, migration, invasiveness, and epithelial-mesenchymal transition in hepatoma cells. Moreover, we show exogenous LECT2 treatment inhibited CSC functions such as tumor sphere formation and drug efflux. Simultaneously, hepatic CSC marker expression was also downregulated, including expression of CD133 and CD44. This was supported by infection with adenovirus encoding LECT2 (Ad-LECT2) in HCC cells. Furthermore, in animal experiments, Ad-LECT2 gene therapy showed potent efficacy in treating HCC. We demonstrate LECT2 overexpression significantly promoted cell apoptosis and reduced neovascularization/CSC expansion in rat hepatoma tissues. Mechanistically, we showed using immunoblot and immunofluorescence analyses that LECT2 inhibited ß-catenin signaling via the suppression of the hepatocyte growth factor/c-MET axis to diminish CSC properties in HCC cells. In summary, we reveal novel functions of LECT2 in the suppression of hepatic CSCs, suggesting a potential alternative strategy for HCC therapy.
Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Humanos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/terapia , Línea Celular Tumoral , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Péptidos y Proteínas de Señalización Intercelular/farmacología , Péptidos y Proteínas de Señalización Intercelular/uso terapéutico , Neoplasias Hepáticas/metabolismo , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/patología , Ratas , Terapia GenéticaRESUMEN
Metal-organic frameworks (MOFs) have emerged as attractive candidates in cancer theranostics due to their ability to envelop magnetic nanoparticles, resulting in reduced cytotoxicity and high porosity, enabling chemodrug encapsulation. Here, FeAu alloy nanoparticles (FeAu NPs) are synthesized and coated with MIL-100(Fe) MOFs to fabricate FeAu@MOF nanostructures. We encapsulated Doxorubicin within the nanostructures and evaluated the suitability of this platform for medical imaging and cancer theranostics. FeAu@MOF nanostructures (FeAu@MIL-100(Fe)) exhibited superparamagnetism, magnetic hyperthermia behavior and displayed DOX encapsulation and release efficiency of 69.95 % and 97.19 %, respectively, when stimulated with alternating magnetic field (AMF). In-vitro experiments showed that AMF-induced hyperthermia resulted in 90 % HSC-3 oral squamous carcinoma cell death, indicating application in cancer theranostics. Finally, in an in-vivo mouse model, FeAu@MOF nanostructures improved image contrast, reduced tumor volume by 30-fold and tumor weight by 10-fold, which translated to enhancement in cumulative survival, highlighting the prospect of this platform for oral cancer treatment.
Asunto(s)
Carcinoma , Hipertermia Inducida , Estructuras Metalorgánicas , Neoplasias de la Boca , Nanoestructuras , Animales , Ratones , Estructuras Metalorgánicas/química , Medicina de Precisión , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Doxorrubicina/química , Neoplasias de la Boca/diagnóstico por imagen , Neoplasias de la Boca/tratamiento farmacológico , Diagnóstico por Imagen , Fenómenos Magnéticos , Nanomedicina TeranósticaRESUMEN
Manipulating Fenton chemistry in tumor microenvironment (TME) for the generation of reactive oxygen species is an effective strategy for chemodynamic therapy. However, this is usually restricted by limited intracellular content of H2O2 and insufficient acidic environment at the tumor site. Herein, a ferric metal-organic framework (MOF) is covalently grafted with a prodrug of cisplatin (Pt(IV) prodrug) and loaded with a biocatalyst glucose oxidase (GOx) to afford a nanozyme MOF-Pt(IV)@GOx for cascade reactions. In this system, the attached Pt(IV) prodrug on MOF plays a significant role in the cooperative enhancement of GOx loading and chemotherapy. The high concentration of glutathione in TME reduces Fe(III) to Fe(II) for Fenton reaction, and converts Pt(IV) prodrug to cisplatin for DNA targeting and H2O2 production. Meanwhile, glucose oxidation catalyzed by GOx not only consumes glucose for starvation therapy, but also promotes the intracellular acidity and H2O2 supply in TME, which are in favor of Fenton reaction. Both in vitro and in vivo studies demonstrate that MOF-Pt(IV)@GOx enables remarkable anticancer efficacy due to the synergistic trimodal therapy consisting of ferroptosis, starvation therapy, and chemotherapy.