Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 460
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(26): e2306318120, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37307435

RESUMEN

Histidine-rich protein II (HRPII) is secreted by Plasmodium falciparum during the blood stage of malaria infection. High plasma levels of HRPII are associated with cerebral malaria, a severe and highly fatal complication of malaria. HRPII has been shown to induce vascular leakage, the hallmark of cerebral malaria, in blood-brain barrier (BBB) and animal models. We have discovered an important mechanism for BBB disruption that is driven by unique features of HRPII. By characterizing serum from infected patients and HRPII produced by P. falciparum parasites in culture, we found that HRPII exists in large multimeric particles of 14 polypeptides that are richly laden with up to 700 hemes per particle. Heme loading of HRPII is required for efficient binding and internalization via caveolin-mediated endocytosis in hCMEC/D3 cerebral microvascular endothelial cells. Upon acidification of endolysosomes, two-thirds of the hemes are released from acid-labile binding sites and metabolized by heme oxygenase 1, generating ferric iron and reactive oxygen species. Subsequent activation of the NLRP3 inflammasome and IL-1ß secretion resulted in endothelial leakage. Inhibition of these pathways with heme sequestration, iron chelation, or anti-inflammatory drugs protected the integrity of the BBB culture model from HRPII:heme. Increased cerebral vascular permeability was seen after injection of young mice with heme-loaded HRPII (HRPII:heme) but not with heme-depleted HRPII. We propose that during severe malaria infection, HRPII:heme nanoparticles in the bloodstream deliver an overwhelming iron load to endothelial cells to cause vascular inflammation and edema. Disrupting this process is an opportunity for targeted adjunctive therapies to reduce the morbidity and mortality of cerebral malaria.


Asunto(s)
Hemoproteínas , Malaria Cerebral , Malaria Falciparum , Animales , Ratones , Histidina , Células Endoteliales , Inflamación , Hemo , Hierro
2.
J Neuroinflammation ; 21(1): 24, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38233868

RESUMEN

BACKGROUND: Venezuelan Equine Encephalitis virus (VEEV) may enter the central nervous system (CNS) within olfactory sensory neurons (OSN) that originate in the nasal cavity after intranasal exposure. While it is known that VEEV has evolved several mechanisms to inhibit type I interferon (IFN) signaling within infected cells, whether this inhibits virologic control during neuroinvasion along OSN has not been studied. METHODS: We utilized an established murine model of intranasal infection with VEEV and a repository of scRNAseq data from IFN-treated OSN to assess the cellular targets and IFN signaling responses after VEEV exposure. RESULTS: We found that immature OSN, which express higher levels of the VEEV receptor LDLRAD3 than mature OSN, are the first cells infected by VEEV. Despite rapid VEEV neuroinvasion after intranasal exposure, olfactory neuroepithelium (ONE) and olfactory bulb (OB) IFN responses, as assessed by evaluation of expression of interferon signaling genes (ISG), are delayed for up to 48 h during VEEV neuroinvasion, representing a potential therapeutic window. Indeed, a single intranasal dose of recombinant IFNα triggers early ISG expression in both the nasal cavity and OB. When administered at the time of or early after infection, IFNα treatment delayed onset of sequelae associated with encephalitis and extended survival by several days. VEEV replication after IFN treatment was also transiently suppressed in the ONE, which inhibited subsequent invasion into the CNS. CONCLUSIONS: Our results demonstrate a critical and promising first evaluation of intranasal IFNα for the treatment of human encephalitic alphavirus exposures.


Asunto(s)
Virus de la Encefalitis Equina Venezolana , Neuronas Receptoras Olfatorias , Humanos , Ratones , Animales , Virus de la Encefalitis Equina Venezolana/genética , Sistema Nervioso Central , Replicación Viral
3.
J Med Virol ; 96(3): e29487, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38482901

RESUMEN

Human norovirus (HuNoV) is the most predominant viral agents of acute gastroenteritis. Point-of-care testing (POCT) based on lateral flow immunochromatography (LIFC) has become an important tool for rapid diagnosis of HuNoVs. However, low sensitivity and lack of quantitation are the bottlenecks of traditional LIFC. Thus, we established a rapid and accurate technique that combined immunomagnetic enrichment (IM) with LFIC to identify GII HuNoVs in fecal specimens. Before preparing immunofluorescent nanomagnetic microspheres and achieving the effect of HuNoV enrichment in IM and fluorescent signal in LFIC, amino-functionalized magnetic beads (MBs) and carboxylated quantum dots (QDs) were coupled at a mass ratio of 4:10. Anti-HuNoV monoclonal antibody was then conjugated with QDs-MB. The limit of detection was 1.56 × 104 copies/mL, and the quantitative detection range was 1.56 × 104 copies/mL-1 × 106 copies/mL under optimal circumstances. The common HuNoV genotypes GII.2, GII.3, GII.4, and GII.17 can be detected, there was no cross-reaction with various enteric viruses, including rotavirus, astrovirus, enterovirus, and sapovirus. A comparison between IM-LFIC and RT-qPCR for the detection of 87 fecal specimens showed a high level of agreement (kappa = 0.799). This suggested that the method is rapid and sensitive, making it a promising option for point-of-care testing in the future.


Asunto(s)
Infecciones por Caliciviridae , Gastroenteritis , Norovirus , Rotavirus , Sapovirus , Humanos , Norovirus/genética , Microesferas , Rotavirus/genética , Sapovirus/genética , Heces , Infecciones por Caliciviridae/diagnóstico
4.
Microb Pathog ; 194: 106792, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39004153

RESUMEN

Foodborne pathogens have become a major concern for public health. Bacillus cereus, a representative foodborne pathogen, is particularly challenging due to its ability to cause food poisoning and its resilient spores that are difficult to completely eradicate. Therefore, it is crucial to develop measures to prevent and control B. cereus. Bacteriophages, which are high specific towards their host strains and cannot infect eukaryotes, have proven to be effective in combating foodborne pathogens and are safe for human use. In this study, we isolated and characterized a novel bacteriophage named vBce-DP7 that specifically targets B. cereus strains belonging to three different sequence types (STs). Phage vBce-DP7 is a lytic one and has a short latent time of only 15 min. Moreover, it exhibites a good temperature tolerance, retaining high activity across a broad range of 4-55 ℃. Additionally, its activity remains unaffected within a wide pH range spanning from 2 to 10. Interestingly, with only 4 % genetic similarity with known bacteriophages, vBce-DP7 shows a possible classification on a family level though it shares many similar functional proteins with Salasmaviridae bacteriophages. Taken together, vBce-DP7 demonstrates its significant potential for further exploration in terms of phage diversity and its application in controlling B. cereus.


Asunto(s)
Fagos de Bacillus , Bacillus cereus , Genoma Viral , Especificidad del Huésped , Filogenia , Temperatura , Bacillus cereus/virología , Fagos de Bacillus/aislamiento & purificación , Fagos de Bacillus/clasificación , Fagos de Bacillus/genética , Fagos de Bacillus/fisiología , Concentración de Iones de Hidrógeno , ADN Viral/genética
5.
Chemistry ; 30(47): e202401345, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-38837813

RESUMEN

Designing porous carbon materials with metal phosphides as host materials holds promise for enhancing the cyclability and durability of lithium-sulfur (Li-S) batteries by mitigating sulfur poisoning and exhibiting high electrocatalytic activity. Nevertheless, it is urgent to precisely control the size of metal phosphides to further optimize the polysulfide conversion reaction kinetics of Li-S batteries. Herein, a subtlety regulation strategy was proposed to obtain ultra-small CoP nanoparticles-decorated hollow carbon nanospheres (CoP@C) by using spherical polyelectrolyte brush (SPB) as the template with stabilizing assistance from polydopamine coating, which also works as carbon source. Leveraging the electrostatic interaction between SPB and Co2+, ultra-small Co particles with sizes measuring 5.5±2.6 nm were endowed after calcination. Subsequently, through a gas-solid phosphating process, these Co particles were converted into CoP nanoparticles with significantly finer sizes (7.1±3.1 nm) compared to state-of-the-art approaches. By uniformly distributing the electrocatalyst nanoparticles on hollow carbon nanospheres, CoP@C facilitated the acceleration of Li-ion diffusion and enhanced the conversion reaction kinetics of polysulfides through adsorption-diffusion synergy. As a result, Li-S batteries utilizing the CoP@C/S cathode demonstrated an initial specific discharge capacity of 850.0 mAh g-1 at 1.0 C, with a low-capacity decay rate of 0.03 % per cycle.

6.
Anesthesiology ; 2024 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-39470760

RESUMEN

BACKGROUND: Midazolam is a short-acting benzodiazepine frequently used in the perioperative setting. This study aimed to investigate the potential impact of intraoperative midazolam on postoperative delirium (POD) in older patients undergoing non-cardiac surgery. METHODS: This study included patients aged ≥ 65 years who received general anaesthesia between April 2020 and April 2022 in multiple hospitals across China. POD occurring within 7 days was assessed using the 3-minute Diagnostic Interview for Confusion Assessment Method (3D-CAM). Univariable and multivariable logistic regression models based on the random effects were used to determine the association between midazolam administration and the occurrence of POD, presented as risk ratio (RR) and 95% confidence intervals (CI). Kaplan-Meier cumulative incidence curve was plotted to compare the distribution of time to POD onset between patients who received midazolam and those who did not. Subgroup analyses based on specific populations were performed to explore the relationship between midazolam and POD. RESULTS: In all, 5,663 patients were included, of whom 723 (12.8%) developed POD. Univariate and multivariable logistic regression analyses based on random effects of different hospitals showed no significant association between midazolam medication and POD among older population (unadjusted RR=0.96, 95% CI: 0.90-1.30, P=0.38; adjusted RR=1.09, 95% CI: 0.91-1.33, P=0.35). Kaplan-Meier curve showed no difference in the distribution of time to POD onset (Hazard ratio [HR]=1.02, 95%CI: 0.88-1.18, P=0.82). The results of subgroup analyses found that intraoperative midazolam treatment was not associated with POD in the specific subgroups of patients. CONCLUSIONS: Intraoperative administration of midazolam may not be associated with an increased risk of POD in older patients undergoing non-cardiac surgery.

7.
Crit Rev Food Sci Nutr ; : 1-25, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39054781

RESUMEN

Food safety is a critical global concern due to its direct impact on human health and overall well-being. In the food processing environment, biofilm formation by foodborne pathogens poses a significant problem as it leads to persistent and high levels of food contamination, thereby compromising the quality and safety of food. Therefore, it is imperative to effectively remove biofilms from the food processing environment to ensure food safety. Unfortunately, conventional cleaning methods fall short of adequately removing biofilms, and they may even contribute to further contamination of both equipment and food. It is necessary to develop alternative approaches that can address this challenge in food industry. One promising strategy in tackling biofilm-related issues is biofilm dispersion, which represents the final step in biofilm development. Here, we discuss the biofilm dispersion mechanism of foodborne pathogens and elucidate how biofilm dispersion can be employed to control and mitigate biofilm-related problems. By shedding light on these aspects, we aim to provide valuable insights and solutions for effectively addressing biofilm contamination issues in food industry, thus enhancing food safety and ensuring the well-being of consumers.

8.
Crit Rev Food Sci Nutr ; : 1-20, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39154217

RESUMEN

Lactic acid bacteria (LAB) are the main probiotics currently available in the markets and are essential for maintaining gut health. To guarantee probiotic function, it is imperative to boost the culture yield of probiotic organisms, ensure the sufficient viable cells in commercial products, or develop effective prebiotics. Recent studies have shown that protein hydrolysates and their derived peptides promote the proliferation of probiotic in vitro and the abundance of gut flora. This article comprehensively reviews different sources of protein hydrolysates and their derived peptides as growth-promoting factors for probiotics including Lactobacillus, Bifidobacterium, and Saccharomyces. We also provide a preliminary analysis of the characteristics of LAB proteolytic systems focusing on the correlation between their elements and growth-promoting activities. The structure-activity relationship and underlying mechanisms of growth-promoting peptides and their research perspectives are thoroughly discussed. Overall, this review provides valuable insights into growth-promoting protein hydrolysates and their derived peptides for proliferating probiotics in vivo or in vitro, which may inspire researchers to explore new options for industrial probiotics proliferation, dairy products fermentation, and novel prebiotics development in the future.

9.
Crit Rev Food Sci Nutr ; : 1-15, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38441497

RESUMEN

The cold chain is an integral part of the modern food industry. Low temperatures can effectively alleviate food loss and the transmission of foodborne diseases caused by microbial reproduction. However, recent reports have highlighted shortcomings in the current cold chain technology's ability to prevent and control cold-tolerant foodborne pathogens. Furthermore, it has been observed that certain cold-chain foods have emerged as new sources of infection for foodborne disease outbreaks. Consequently, there is a pressing need to enhance control measures targeting cold-tolerant pathogens within the existing cold chain system. This paper aims to review the recent advancements in understanding the cold tolerance mechanisms of key model organisms, identify key issues in current research, and explore the potential of utilizing big data and omics technology in future studies.

10.
Appl Microbiol Biotechnol ; 108(1): 156, 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38244075

RESUMEN

Cardiometabolic disease (CMD) encompasses a range of diseases such as hypertension, atherosclerosis, heart failure, obesity, and type 2 diabetes. Recent findings about CMD's interaction with gut microbiota have broadened our understanding of how diet and nutrition drive microbes to influence CMD. However, the translation of basic research into the clinic has not been smooth, and dietary nutrition and probiotic supplementation have yet to show significant evidence of the therapeutic benefits of CMD. In addition, the published reviews do not suggest the core microbiota or metabolite classes that influence CMD, and systematically elucidate the causal relationship between host disease phenotypes-microbiome. The aim of this review is to highlight the complex interaction of the gut microbiota and their metabolites with CMD progression and to further centralize and conceptualize the mechanisms of action between microbial and host disease phenotypes. We also discuss the potential of targeting modulations of gut microbes and metabolites as new targets for prevention and treatment of CMD, including the use of emerging technologies such as fecal microbiota transplantation and nanomedicine. KEY POINTS: • To highlight the complex interaction of the gut microbiota and their metabolites with CMD progression and to further centralize and conceptualize the mechanisms of action between microbial and host disease phenotypes. • We also discuss the potential of targeting modulations of gut microbes and metabolites as new targets for prevention and treatment of CMD, including the use of emerging technologies such as FMT and nanomedicine. • Our study provides insight into identification-specific microbiomes and metabolites involved in CMD, and microbial-host changes and physiological factors as disease phenotypes develop, which will help to map the microbiome individually and capture pathogenic mechanisms as a whole.


Asunto(s)
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Insuficiencia Cardíaca , Microbiota , Humanos , Microbioma Gastrointestinal/fisiología , Diabetes Mellitus Tipo 2/terapia , Dieta
11.
Photodermatol Photoimmunol Photomed ; 40(4): e12987, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38968385

RESUMEN

BACKGROUND: Skin microbiota is essential for health maintenance. Photoaging is the primary environmental factor that affects skin homeostasis, but whether it influences the skin microbiota remains unclear. OBJECTIVE: The objective of this study is to investigate the relationship between photoaging and skin microbiome. METHODS: A cohort of senior bus drivers was considered as a long-term unilateral ultraviolet (UV) irradiated population. 16S rRNA amplicon sequencing was conducted to assess skin microbial composition variations on different sides of their faces. The microbiome characteristics of the photoaged population were further examined by photoaging guinea pig models, and the correlations between microbial metabolites and aging-related cytokines were analyzed by high-throughput sequencing and reverse transcription polymerase chain reaction. RESULTS: Photoaging decreased the relative abundance of microorganisms including Georgenia and Thermobifida in human skin and downregulated the generation of skin microbe-derived antioxidative metabolites such as ectoin. In animal models, Lactobacillus and Streptobacillus abundance in both the epidermis and dermis dropped after UV irradiation, resulting in low levels of skin antioxidative molecules and leading to elevated expressions of the collagen degradation factors matrix metalloproteinase (MMP)-1 and MMP-2 and inflammatory factors such as interleukin (IL)-1ß and IL-6. CONCLUSIONS: Skin microbial characteristics have an impact in photoaging and the loss of microbe-derived antioxidative metabolites impairs skin cells and accelerates the aging process. Therefore, microbiome-based therapeutics may have potential in delaying skin aging.


Asunto(s)
Microbiota , Envejecimiento de la Piel , Piel , Rayos Ultravioleta , Humanos , Animales , Cobayas , Piel/microbiología , Piel/metabolismo , Masculino , Femenino , Persona de Mediana Edad , ARN Ribosómico 16S
12.
Mikrochim Acta ; 191(7): 438, 2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951285

RESUMEN

A dual-recognition strategy is reported to construct a one-step washing and highly efficient signal-transduction tag system for high-sensitivity colorimetric detection of Staphylococcus aureus (S. aureus). The porous (gold core)@(platinum shell) nanozymes (Au@PtNEs) as the signal labels show highly efficient peroxidase mimetic activity and are robust. For the sake of simplicity the detection involved the use of a vancomycin-immobilized magnetic bead (MB) and aptamer-functionalized Au@PtNEs for dual-recognition detection in the presence of S. aureus. In addition, we designed a magnetic plate to fit the 96-well microplate to ensure consistent magnetic properties of each well, which can quickly remove unreacted Au@PtNEs and sample matrix while avoiding tedious washing steps. Subsequently, Au@PtNEs catalyze hydrogen peroxide (H2O2) to oxidize 3,3',5,5'-tetramethylbenzidine (TMB) generating a color signal. Finally, the developed Au@PtNEs-based dual-recognition washing-free colorimetric assay displayed a response in the range of S. aureus of 5 × 101-5 × 105 CFU/mL, and the detection limit was 40 CFU/mL within 1.5 h. In addition, S. aureus-fortified samples were analyzed to further evaluate the performance of the proposed method, which yielded average recoveries ranging from 93.66 to 112.44% and coefficients of variation (CVs) within the range 2.72-9.01%. These results furnish a novel horizon for the exploitation of a different mode of recognition and inexpensive enzyme-free assay platforms as an alternative to traditional enzyme-based immunoassays for the detection of other Gram-positive pathogenic bacteria.


Asunto(s)
Bencidinas , Colorimetría , Oro , Peróxido de Hidrógeno , Límite de Detección , Platino (Metal) , Staphylococcus aureus , Staphylococcus aureus/aislamiento & purificación , Colorimetría/métodos , Oro/química , Platino (Metal)/química , Porosidad , Bencidinas/química , Peróxido de Hidrógeno/química , Aptámeros de Nucleótidos/química , Nanopartículas del Metal/química , Vancomicina/química , Técnicas Biosensibles/métodos , Catálisis , Humanos
13.
Emerg Infect Dis ; 29(9): 1917-1920, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37610257

RESUMEN

We report fatal neonatal necrotizing enterocolitis in China caused by Cronobacter sakazakii capsular profile K1:CA1, sequence type 64, and CRISPR type 197. Phylodynamic analyses indicated that the strain originated from the ancient, widespread, and antimicrobial drug-sensitive CRISPR sublineage b. Enhanced surveillance and pathogenesis research on this organism are required.


Asunto(s)
Cronobacter sakazakii , Enterocolitis Necrotizante , Enfermedades del Recién Nacido , Recién Nacido , Humanos , Enterocolitis Necrotizante/diagnóstico , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Cronobacter sakazakii/genética , China
14.
Anal Chem ; 95(15): 6218-6226, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37014709

RESUMEN

The rapid identification of pathogenic microorganism serotypes is still a bottleneck problem to be solved urgently. Compared with proteomics technology, metabolomics technology is directly related to phenotypes and has higher specificity in identifying pathogenic microorganism serotypes. Our study combines pseudotargeted metabolomics with deep learning techniques to obtain a new deep semiquantitative fingerprinting method for Listeria monocytogenes identification at the serotype levels. We prescreened 396 features with orthogonal partial least-squares discrimination analysis (OPLS-DA), and 200 features were selected for deep learning model building. A residual learning framework for L. monocytogenes identification was established. There were 256 convolutional filters in the initial convolution layer, and each hidden layer contained 128 filters. The total depth included seven layers, consisting of an initial convolution layer, a residual layer, and two final fully connected classification layers, with each residual layer containing four convolutional layers. In addition, transfer learning was used to predict new isolates that did not participate in model training to verify the method's feasibility. Finally, we achieved prediction accuracies of L. monocytogenes at the serotype level exceeding 99%. The prediction accuracy of the new strain validation set was greater than 97%, further demonstrating the feasibility of this method. Therefore, this technology will be a powerful tool for the rapid and accurate identification of pathogens.


Asunto(s)
Aprendizaje Profundo , Listeria monocytogenes , Serogrupo , Fenotipo , Metabolómica
15.
Fungal Genet Biol ; 167: 103796, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37146899

RESUMEN

Heat stress (HS) is a major abiotic factor influencing fungal growth and metabolism. However, the genetic basis of thermotolerance in Ganoderma lingzhi (G. lingzhi) remains largely unknown. In this study, we investigated the thermotolerance capacities of 21 G. lingzhi strains and screened the thermo-tolerant (S566) and heat-sensitive (Z381) strains. The mycelia of S566 and Z381 were collected and subjected to a tandem mass tag (TMT)-based proteome assay. We identified 1493 differentially expressed proteins (DEPs), with 376 and 395 DEPs specific to the heat-tolerant and heat-susceptible genotypes, respectively. In the heat-tolerant genotype, upregulated proteins were linked to stimulus regulation and response. Proteins related to oxidative phosphorylation, glycosylphosphatidylinositol-anchor biosynthesis, and cell wall macromolecule metabolism were downregulated in susceptible genotypes. After HS, the mycelial growth of the heat-sensitive Z381 strain was inhibited, and mitochondrial cristae and cell wall integrity of this strain were severely impaired, suggesting that HS may inhibit mycelial growth of Z381 by damaging the cell wall and mitochondrial structure. Furthermore, thermotolerance-related regulatory pathways were explored by analyzing the protein-protein interaction network of DEPs considered to participate in the controlling the thermotolerance capacity. This study provides insights into G. lingzhi thermotolerance mechanisms and a basis for breeding a thermotolerant germplasm bank for G. lingzhi and other fungi.


Asunto(s)
Ganoderma , Termotolerancia , Termotolerancia/genética , Proteómica , Respuesta al Choque Térmico/genética , Ganoderma/genética
16.
J Transl Med ; 21(1): 740, 2023 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-37858192

RESUMEN

BACKGROUND: Changes in the gut microbiota composition is a hallmark of chronic kidney disease (CKD), and interventions targeting the gut microbiota present a potent approach for CKD treatment. This study aimed to evaluate the efficacy and safety of washed microbiota transplantation (WMT), a modified faecal microbiota transplantation method, on the renal activity of patients with renal dysfunction. METHODS: A comparative analysis of gut microbiota profiles was conducted in patients with renal dysfunction and healthy controls. Furthermore, the efficacy of WMT on renal parameters in patients with renal dysfunction was evaluated, and the changes in gut microbiota and urinary metabolites after WMT treatment were analysed. RESULTS: Principal coordinate analysis revealed a significant difference in microbial community structure between patients with renal dysfunction and healthy controls (P = 0.01). Patients with renal dysfunction who underwent WMT exhibited significant improvement in serum creatinine, estimated glomerular filtration rate, and blood urea nitrogen (all P < 0.05) compared with those who did not undergo WMT. The incidence of adverse events associated with WMT treatment was low (2.91%). After WMT, the Shannon index of gut microbiota and the abundance of several probiotic bacteria significantly increased in patients with renal dysfunction, aligning their gut microbiome profiles more closely with those of healthy donors (all P < 0.05). Additionally, the urine of patients after WMT demonstrated relatively higher levels of three toxic metabolites, namely hippuric acid, cinnamoylglycine, and indole (all P < 0.05). CONCLUSIONS: WMT is a safe and effective method for improving renal function in patients with renal dysfunction by modulating the gut microbiota and promoting toxic metabolite excretion.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Insuficiencia Renal Crónica , Humanos , Estudios Retrospectivos , Riñón/metabolismo , Insuficiencia Renal Crónica/terapia
17.
J Med Virol ; 95(1): e28216, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36254681

RESUMEN

Norovirus is the primary foodborne pathogenic agent causing viral acute gastroenteritis. It possesses broad genetic diversity and the prevalence of different genotypes varies substantially. However, the differences in RNA-dependent RNA polymerase (RdRp) activity among different genotypes of noroviruses remain unclear. In this study, the molecular mechanism of RdRp activity difference between the epidemic strain GII.17[P17] and the non-epidemic strain GII.8[P8] was characterized. By evaluating the evolutionary history of RdRp sequences with Markov Chain Monte Carlo method, the evolution rate of GII.17[P17] variants was higher than that of GII.8[P8] variants (1.22 × 10-3 nucleotide substitutions/site/year to 9.31 × 10-4 nucleotide substitutions/site/year, respectively). The enzyme catalytic reaction demonstrated that the Vmax value of GII.17[P17] RdRp was 2.5 times than that of GII.8[P8] RdRp. And the Km of GII.17[P17] and GII.8[P8] RdRp were 0.01 and 0.15 mmol/L, respectively. Then, GII.8[P8] RdRp fragment mutants (A-F) were designed, among which GII.8[P8]-A/B containing the conserved motif G/F were found to have significant effects on improving RdRp activity. The Km values of GII.8[P8]-A/B reached 0.07 and 0.06 mmol/L, respectively. And their Vmax values were 1.34 times than that of GII.8[P8] RdRp. In summary, our results suggested that RdRp activities were correlated with their epidemic characteristics. These findings will ultimately provide a better understanding in replication mechanism of noroviruses and development of antiviral drugs.


Asunto(s)
Infecciones por Caliciviridae , Norovirus , Humanos , Norovirus/genética , Variación Genética , Infecciones por Caliciviridae/epidemiología , Genotipo , ARN Polimerasa Dependiente del ARN/genética , Nucleótidos , Filogenia
18.
Crit Rev Food Sci Nutr ; 63(21): 5306-5321, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34927484

RESUMEN

Outbreaks associated with low-moisture foods (e.g., wheat flour, nuts, and cereals) have urged the development of novel technologies and re-validation of legacy pasteurization process. For various thermal pasteurization processes, they share same scientific facts (e.g., bacterial heat resistance increased at reduced water activity) and guidelines. However, they also face specific challenges because of their different heat transfer mechanisms, processing conditions, or associated low-moisture foods' formulations. In this article, we first introduced the general structural for validating a thermal process and the shared basic information that would support our understanding of the key elements of each thermal process. Then, we reviewed the current progress of validation studies of 7 individual heating technologies (drying roasting, radiofrequency-assisted pasteurization, superheated steam, etc.) and the combined treatments (e.g., infrared and hot air). Last, we discussed knowledge gaps that require more scientific data in the future studies. We aimed to provide a process-centric view point of thermal pasteurization studies of low-moisture foods. The information could provide detailed protocol for process developers, operators, and managers to enhance low-moisture foods safety.


Asunto(s)
Harina , Pasteurización , Pasteurización/métodos , Harina/análisis , Microbiología de Alimentos , Salmonella , Triticum , Calor , Recuento de Colonia Microbiana
19.
Crit Rev Food Sci Nutr ; : 1-14, 2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36728929

RESUMEN

Dysfunctional autophagy induced by excessive reactive oxygen species (ROS) load and inflammation accelerates the development of Alzheimer's disease (AD). Recently, there has been an increasing interest in selenium-enriched ingredients (SEIs), such as selenoproteins, selenoamino acids and selenosugars, which could improve AD through antioxidant and anti-inflammation, as well as autophagy modulating effects. This review indicates that SEIs eliminate excessive ROS by activating the nuclear translocation of nuclear factor erythroid2-related factor 2 (Nrf2) and alleviate inflammation by inhibiting the mitogen-activated protein kinases (MAPKs)/nuclear factor kappa-B (NF-κB) pathway. Furthermore, they can activate the adenosine 5'-monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway, and subsequently promote amyloid beta (Aß) clearance and reduce memory impairments. SEIs are ubiquitous in many plants and microorganisms, such as Brassicaceae vegetables, yeast, and mushroom. Enzymatic hydrolysis, as well as physical processing, such as thermal, high pressure and microwave treatment, are the main techniques to modify the properties of dietary selenium. This work highlights the fact that SEIs can inhibit inflammation and oxidative stress and provides evidence that supports the potential use of these dietary materials to be a novel strategy for improving AD.

20.
Crit Rev Food Sci Nutr ; 63(15): 2388-2406, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34553662

RESUMEN

Alzheimer's disease (AD) is a progressive neurodegenerative disorder. Recently, sustained neuroinflammatory response in microglia and astrocytes has been found to cause the deposition of amyloid beta plaques and the hyperphosphorylation of tau protein, thereby accelerating AD progression. The lipoxin A4-transcription factor nuclear factor-kappa B and mitogen-activated protein kinase pathways have been shown to play important roles in the regulation of inflammatory processes. There is growing research-based evidence suggesting that dietary whole-plant foods, such as mushrooms and berries, may be used as inhibitors for anti-neuroinflammation. The beneficial effects of whole-plant foods were mainly attributed to their high contents of functional macromolecules including polysaccharides, polyphenols, and bioactive peptides. This review provides up-to-date information on important molecular signaling pathways of neuroinflammation and discusses the anti-neuroinflammatory effects of whole-plant foods. Further, a critical evaluation of plants' macromolecular components that have the potential to prevent and/or relieve AD is provided. This work will contribute to better understanding the pathogenetic mechanism of neuroinflammation in AD and provide new approaches for AD therapy.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/farmacología , Transducción de Señal , FN-kappa B/metabolismo , Inflamación/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA