RESUMEN
MicroRNA (miRNA) mimics or antagomirs hold great promise for asthma treatment compared with glucocorticoids as mainstay therapy for asthma. But the role of miRNA in regulating asthmatic inflammation is largely unclear. We previously reported that miR-3162-3p in the peripheral blood of children with asthma was obviously upregulated compared to that in healthy children. This study aimed to elucidate the role of miR-3162-3p in pulmonary inflammation in normal and asthmatic mice as well as preliminarily explore the potential of miR-3162-3p antagomir in asthma treatment. A noninvasive whole-body plethysmograph measured airway responsiveness. Both qRT-PCR and Western blot were used to detect the expression of miRNA, mRNA, or protein. Cells in bronchoalveolar lavage fluid were counted by platelet counting and Wright's staining. Inflammatory infiltration and mucus secretion were identified by hematoxylin and eosin and periodic acid-Schiff staining, respectively. Cytokines in the lungs were detected by ELISA. The miR-3162-3p mimic intraperitoneally administered to normal mice decreased ß-catenin levels in the lungs without obviously altering the lung histology and cytokine levels. Antagonizing miR-3162-3p in ovalbumin-induced asthmatic mice effectively alleviated the typical features of asthma, such as airway hyper-responsiveness, airway inflammation, and Th1/Th2 cytokine imbalance, and concomitantly rescued the total and active ß-catenin expression. Collectively, we discovered divergent roles of miR-3162-3p in lung inflammation between normal and asthmatic mice. The anti-inflammatory effects of the miR-3162-3p antagomir were comparable to those of glucocorticoid treatment. Our study helped in understanding the contribution of miRNAs to the pathogenesis of asthma.
Asunto(s)
Antagomirs/genética , Asma/genética , Pulmón/metabolismo , MicroARNs/genética , Neumonía/genética , Alérgenos/inmunología , Animales , Niño , Citocinas/metabolismo , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Humanos , Pulmón/patología , Ratones , Ovalbúmina/inmunología , Hipersensibilidad Respiratoria , Células TH1/inmunología , Células Th2/inmunología , beta Catenina/metabolismoRESUMEN
Particulate matter with a diameter of less than 2.5⯵m (PM2.5) easily deposits on lung alveoli and degrades human health. Surfactant protein A (SP-A) is the most abundant pulmonary surfactant protein stored in lamellar bodies (LBs) of alveolar epithelial type II cells. The impacts of PM2.5 on SP-A are multifaceted and intractable, and the underlying mechanism remains unclear. In this study, the expression and distribution of SP-A in Balb/c mice and A549 cells under PM2.5 exposure were investigated. The results showed that the low and medium concentration of PM2.5 gradually enhanced SP-A protein and mRNA expression, whereas the high concentration of PM2.5 conspicuously decreased SP-A protein but not its mRNA compared with the control. The trafficking of SP-A to LBs was gradually disturbed, and concomitantly, the lesions of LBs responsible for the transport and storage of SP-A protein were exacerbated with increased PM2.5 concentration. Reactive oxygen species production abundantly increased upon PM2.5 exposure, and it was antagonized by the oxidant inhibitor N-acetylcysteine. Subsequently, the injured LBs and the decrease in SP-A expression under exposure to the high concentration of PM2.5 were well rescued. The present study provides a new perspective to investigate the adverse effects of PM2.5 or diesel exhaust particles on other proteins transported to and stored in LBs.