Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Langmuir ; 31(8): 2251-5, 2015 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-25689447

RESUMEN

Green and simple synthesis of high-quality colloidal quantum dots (CQDs) is of great importance and highly anticipated yet not fully implemented. Herein, we achieve the direct conversion of natural minerals to highly uniform, crystalline lead sulfide CQDs based on laser irradiation in liquid. The trivial fragmentation of mineral particles by an intense nanosecond laser was found to create a localized high degree of monomer supersaturation in oleic acid, initiating the LaMer growth of uniform CQDs. The photoconductive device made of these CQDs exhibits a competitive temporal response of photocurrent with those highly sensitive photodetectors based on PbS CQDs reported in the literature. Our synthesis strategy paves the way for the most environmentally friendly and convenient mass production of high-quality uniform CQDs.


Asunto(s)
Plomo/química , Puntos Cuánticos , Sulfuros/química , Coloides/química , Tamaño de la Partícula , Propiedades de Superficie
2.
Nat Commun ; 4: 1695, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23591862

RESUMEN

Monodisperse colloidal quantum dots with size dispersions <10% are of great importance in realizing functionality manipulation, as well as building advanced devices, and have been normally synthesized via 'bottom-up' colloidal chemistry. Here we report a facile and environmentally friendly 'top-down' strategy towards highly crystalline monodisperse colloidal PbS quantum dots with controllable sizes and narrow dispersions 5.5%<σ<9.1%, based on laser irradiation of a suspension of polydisperse PbS nanocrystals with larger sizes. The colloidal quantum dots demonstrate size-tunable near-infrared photoluminescence, and self-assemble into well-ordered two-dimensional or three-dimensional superlattices due to the small degree of polydispersity and surface capping of 1-dodecanethiol, not only serving as a surfactant but also a sulphur source. The acquisition of monodisperse colloidal PbS quantum dots is ascribed to both the quantum-confinement effect of quantum dots and the size-selective-vaporization effect of the millisecond pulse laser with monochromaticity and low intensity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA