Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
PLoS Comput Biol ; 13(7): e1005618, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28686599

RESUMEN

The liver is a vital organ involving in various major metabolic functions in human body. MicroRNA-122 (miR-122) plays an important role in the regulation of liver metabolism, but its intrinsic physiological functions require further clarification. This study integrated the genome-scale metabolic model of hepatocytes and mouse experimental data with germline deletion of Mir122a (Mir122a-/-) to infer Warburg-like effects. Elevated expression of MiR-122a target genes in Mir122a-/-mice, especially those encoding for metabolic enzymes, was applied to analyze the flux distributions of the genome-scale metabolic model in normal and deficient states. By definition of the similarity ratio, we compared the flux fold change of the genome-scale metabolic model computational results and metabolomic profiling data measured through a liquid-chromatography with mass spectrometer, respectively, for hepatocytes of 2-month-old mice in normal and deficient states. The Ddc gene demonstrated the highest similarity ratio of 95% to the biological hypothesis of the Warburg effect, and similarity of 75% to the experimental observation. We also used 2, 6, and 11 months of mir-122 knockout mice liver cell to examined the expression pattern of DDC in the knockout mice livers to show upregulated profiles of DDC from the data. Furthermore, through a bioinformatics (LINCS program) prediction, BTK inhibitors and withaferin A could downregulate DDC expression, suggesting that such drugs could potentially alter the early events of metabolomics of liver cancer cells.


Asunto(s)
Hepatocitos/metabolismo , Neoplasias Hepáticas/metabolismo , Hígado/metabolismo , Análisis de Flujos Metabólicos/métodos , MicroARNs/genética , Animales , Glucosa/metabolismo , Humanos , Neoplasias Hepáticas/genética , Metabolómica , Ratones , Ratones Noqueados , MicroARNs/metabolismo
2.
FEBS Open Bio ; 11(8): 2078-2094, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34137202

RESUMEN

Cancer cell dysregulations result in the abnormal regulation of cellular metabolic pathways. By simulating this metabolic reprogramming using constraint-based modeling approaches, oncogenes can be predicted, and this knowledge can be used in prognosis and treatment. We introduced a trilevel optimization problem describing metabolic reprogramming for inferring oncogenes. First, this study used RNA-Seq expression data of lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) samples and their healthy counterparts to reconstruct tissue-specific genome-scale metabolic models and subsequently build the flux distribution pattern that provided a measure for the oncogene inference optimization problem for determining tumorigenesis. The platform detected 45 genes for LUAD and 84 genes for LUSC that lead to tumorigenesis. A high level of differentially expressed genes was not an essential factor for determining tumorigenesis. The platform indicated that pyruvate kinase (PKM), a well-known oncogene with a low level of differential gene expression in LUAD and LUSC, had the highest fitness among the predicted oncogenes based on computation. By contrast, pyruvate kinase L/R (PKLR), an isozyme of PKM, had a high level of differential gene expression in both cancers. Phosphatidylserine synthase 1 (PTDSS1), an oncogene in LUAD, was inferred to have a low level of differential gene expression, and overexpression could significantly reduce survival probability. According to the factor analysis, PTDSS1 characteristics were close to those of the template, but they were unobvious in LUSC. Angiotensin-converting enzyme 2 (ACE2) has recently garnered widespread interest as the SARS-CoV-2 virus receptor. Moreover, we determined that ACE2 is an oncogene of LUSC but not of LUAD. The platform developed in this study can identify oncogenes with low levels of differential expression and be used to identify potential therapeutic targets for cancer treatment.

3.
Biology (Basel) ; 10(11)2021 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-34827109

RESUMEN

The efficient discovery of anticancer targets with minimal side effects is a major challenge in drug discovery and development. Early prediction of side effects is key for reducing development costs, increasing drug efficacy, and increasing drug safety. This study developed a fuzzy optimization framework for Identifying AntiCancer Targets (IACT) using constraint-based models. Four objectives were established to evaluate the mortality of treated cancer cells and to minimize side effects causing toxicity-induced tumorigenesis on normal cells and smaller metabolic perturbations. Fuzzy set theory was applied to evaluate potential side effects and investigate the magnitude of metabolic deviations in perturbed cells compared with their normal counterparts. The framework was applied to identify not only gene regulator targets but also metabolite- and reaction-centric targets. A nested hybrid differential evolution algorithm with a hierarchical fitness function was applied to solve multilevel IACT problems. The results show that the combination of a carbon metabolism target and any one-target gene that participates in the sphingolipid, glycerophospholipid, nucleotide, cholesterol biosynthesis, or pentose phosphate pathways is more effective for treatment than one-target inhibition is. A clinical antimetabolite drug 5-fluorouracil (5-FU) has been used to inhibit synthesis of deoxythymidine-5'-triphosphate for treatment of colorectal cancer. The computational results reveal that a two-target combination of 5-FU and a folate supplement can improve cell viability, reduce metabolic deviation, and reduce side effects of normal cells.

4.
BMC Bioinformatics ; 11 Suppl 7: S12, 2010 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-21106119

RESUMEN

BACKGROUND: Mathematical modeling has been applied to the study and analysis of complex biological systems for a long time. Some processes in biological systems, such as the gene expression and feedback control in signal transduction networks, involve a time delay. These systems are represented as delay differential equation (DDE) models. Numerical sensitivity analysis of a DDE model by the direct method requires the solutions of model and sensitivity equations with time-delays. The major effort is the computation of Jacobian matrix when computing the solution of sensitivity equations. The computation of partial derivatives of complex equations either by the analytic method or by symbolic manipulation is time consuming, inconvenient, and prone to introduce human errors. To address this problem, an automatic approach to obtain the derivatives of complex functions efficiently and accurately is necessary. RESULTS: We have proposed an efficient algorithm with an adaptive step size control to compute the solution and dynamic sensitivities of biological systems described by ordinal differential equations (ODEs). The adaptive direct-decoupled algorithm is extended to solve the solution and dynamic sensitivities of time-delay systems describing by DDEs. To save the human effort and avoid the human errors in the computation of partial derivatives, an automatic differentiation technique is embedded in the extended algorithm to evaluate the Jacobian matrix. The extended algorithm is implemented and applied to two realistic models with time-delays: the cardiovascular control system and the TNF-α signal transduction network. The results show that the extended algorithm is a good tool for dynamic sensitivity analysis on DDE models with less user intervention. CONCLUSIONS: By comparing with direct-coupled methods in theory, the extended algorithm is efficient, accurate, and easy to use for end users without programming background to do dynamic sensitivity analysis on complex biological systems with time-delays.


Asunto(s)
Algoritmos , Modelos Biológicos , Biología de Sistemas/métodos , Sistema Cardiovascular/metabolismo , Simulación por Computador , Fragmentación del ADN , Humanos , FN-kappa B/metabolismo , Reproducibilidad de los Resultados , Transducción de Señal , Factores de Tiempo , Factor de Necrosis Tumoral alfa/metabolismo
5.
Biochem Biophys Res Commun ; 402(2): 228-34, 2010 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-20933502

RESUMEN

DNA methylation is a gene-silencing and host defense system that can down-regulate viral gene expression in mammalian cells. An established targeted DNA methylation method was used to demonstrate that genome-integrated CMV and adenovirus type 5 E1A promoters were hypermethylated after MCF7 and HEK293 cells were transfected with in vitro methylated viral promoter fragments. In both cases, the targeted methylation-induced gene silencing could be reversed by addition of 5-aza-2'-deoxycytidine, confirming that the CMV and E1A promoters are regulated by DNA methylation. The kinetics of the targeted DNA methylation was determined using a reporter system in live cells. In conclusion, targeted DNA methylation is able to efficiently silence susceptible viral promoters and provides an alternative strategy to study the impact of loci-specific DNA methylation in viral gene expression.


Asunto(s)
Proteínas E1A de Adenovirus/genética , Citomegalovirus/genética , Metilación de ADN , Regulación Viral de la Expresión Génica , Silenciador del Gen , Línea Celular , Humanos , Regiones Promotoras Genéticas
6.
R Soc Open Sci ; 7(3): 191241, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32269785

RESUMEN

Cancer cells are known to exhibit unusual metabolic activity, and yet few metabolic cancer driver genes are known. Genetic alterations and epigenetic modifications of cancer cells result in the abnormal regulation of cellular metabolic pathways that are different when compared with normal cells. Such a metabolic reprogramming can be simulated using constraint-based modelling approaches towards predicting oncogenes. We introduced the tri-level optimization problem to use the metabolic reprogramming towards inferring oncogenes. The algorithm incorporated Recon 2.2 network with the Human Protein Atlas to reconstruct genome-scale metabolic network models of the tissue-specific cells at normal and cancer states, respectively. Such reconstructed models were applied to build the templates of the metabolic reprogramming between normal and cancer cell metabolism. The inference optimization problem was formulated to use the templates as a measure towards predicting oncogenes. The nested hybrid differential evolution algorithm was applied to solve the problem to overcome solving difficulty for transferring the inner optimization problem into the single one. Head and neck squamous cells were applied as a case study to evaluate the algorithm. We detected 13 of the top-ranked one-hit dysregulations and 17 of the top-ranked two-hit oncogenes with high similarity ratios to the templates. According to the literature survey, most inferred oncogenes are consistent with the observation in various tissues. Furthermore, the inferred oncogenes were highly connected with the TP53/AKT/IGF/MTOR signalling pathway through PTEN, which is one of the most frequently detected tumour suppressor genes in human cancer.

7.
Metabolites ; 10(1)2019 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-31881674

RESUMEN

Although cancer has historically been regarded as a cell proliferation disorder, it has recently been considered a metabolic disease. The first discovery of metabolic alterations in cancer cells refers to Otto Warburg's observations. Cancer metabolism results in alterations in metabolic fluxes that are evident in cancer cells compared with most normal tissue cells. This study applied protein expressions of normal and cancer cells to reconstruct two tissue-specific genome-scale metabolic models. Both models were employed in a tri-level optimization framework to infer oncogenes. Moreover, this study also introduced enzyme pseudo-coding numbers in the gene association expression to avoid performing posterior decision-making that is necessary for the reaction-based method. Colorectal cancer (CRC) was the topic of this case study, and 20 top-ranked oncogenes were determined. Notably, these dysregulated genes were involved in various metabolic subsystems and compartments. We found that the average similarity ratio for each dysregulation is higher than 98%, and the extent of similarity for flux changes is higher than 93%. On the basis of surveys of PubMed and GeneCards, these oncogenes were also investigated in various carcinomas and diseases. Most dysregulated genes connect to catalase that acts as a hub and connects protein signaling pathways, such as those involving TP53, mTOR, AKT1, MAPK1, EGFR, MYC, CDK8, and RAS family.

8.
BMC Bioinformatics ; 9 Suppl 12: S17, 2008 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-19091016

RESUMEN

BACKGROUND: A mathematical model to understand, predict, control, or even design a real biological system is a central theme in systems biology. A dynamic biological system is always modeled as a nonlinear ordinary differential equation (ODE) system. How to simulate the dynamic behavior and dynamic parameter sensitivities of systems described by ODEs efficiently and accurately is a critical job. In many practical applications, e.g., the fed-batch fermentation systems, the system admissible input (corresponding to independent variables of the system) can be time-dependent. The main difficulty for investigating the dynamic log gains of these systems is the infinite dimension due to the time-dependent input. The classical dynamic sensitivity analysis does not take into account this case for the dynamic log gains. RESULTS: We present an algorithm with an adaptive step size control that can be used for computing the solution and dynamic sensitivities of an autonomous ODE system simultaneously. Although our algorithm is one of the decouple direct methods in computing dynamic sensitivities of an ODE system, the step size determined by model equations can be used on the computations of the time profile and dynamic sensitivities with moderate accuracy even when sensitivity equations are more stiff than model equations. To show this algorithm can perform the dynamic sensitivity analysis on very stiff ODE systems with moderate accuracy, it is implemented and applied to two sets of chemical reactions: pyrolysis of ethane and oxidation of formaldehyde. The accuracy of this algorithm is demonstrated by comparing the dynamic parameter sensitivities obtained from this new algorithm and from the direct method with Rosenbrock stiff integrator based on the indirect method. The same dynamic sensitivity analysis was performed on an ethanol fed-batch fermentation system with a time-varying feed rate to evaluate the applicability of the algorithm to realistic models with time-dependent admissible input. CONCLUSION: By combining the accuracy we show with the efficiency of being a decouple direct method, our algorithm is an excellent method for computing dynamic parameter sensitivities in stiff problems. We extend the scope of classical dynamic sensitivity analysis to the investigation of dynamic log gains of models with time-dependent admissible input.


Asunto(s)
Biología Computacional/métodos , Algoritmos , Simulación por Computador , Etano/química , Etanol/farmacología , Fermentación , Formaldehído/química , Modelos Biológicos , Modelos Teóricos , Reproducibilidad de los Resultados , Saccharomyces/fisiología , Sensibilidad y Especificidad , Biología de Sistemas , Teoría de Sistemas
9.
BMC Syst Biol ; 5: 145, 2011 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-21929795

RESUMEN

BACKGROUND: Improving the synthesis rate of desired metabolites in metabolic systems is one of the main tasks in metabolic engineering. In the last decade, metabolic engineering approaches based on the mathematical optimization have been used extensively for the analysis and manipulation of metabolic networks. Experimental evidence shows that mutants reflect resilience phenomena against gene alterations. Although researchers have published many studies on the design of metabolic systems based on kinetic models and optimization strategies, almost no studies discuss the multi-objective optimization problem for enzyme manipulations in metabolic networks considering resilience phenomenon. RESULTS: This study proposes a generalized fuzzy multi-objective optimization approach to formulate the enzyme intervention problem for metabolic networks considering resilience phenomena and cell viability. This approach is a general framework that can be applied to any metabolic networks to investigate the influence of resilience phenomena on gene intervention strategies and maximum target synthesis rates. This study evaluates the performance of the proposed approach by applying it to two metabolic systems: S. cerevisiae and E. coli. Results show that the maximum synthesis rates of target products by genetic interventions are always over-estimated in metabolic networks that do not consider the resilience effects. CONCLUSIONS: Considering the resilience phenomena in metabolic networks can improve the predictions of gene intervention and maximum synthesis rates in metabolic engineering. The proposed generalized fuzzy multi-objective optimization approach has the potential to be a good and practical framework in the design of metabolic networks.


Asunto(s)
Reactores Biológicos , Enzimas/genética , Ingeniería Metabólica/métodos , Redes y Vías Metabólicas/fisiología , Modelos Biológicos , Aminoácidos/biosíntesis , Escherichia coli/metabolismo , Etanol/metabolismo , Fermentación , Lógica Difusa , Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA