Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Acta Pharmacol Sin ; 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632319

RESUMEN

Liver receptor homolog-1 (LRH-1), a member of the nuclear receptor superfamily, is a ligand-regulated transcription factor that plays crucial roles in metabolism, development, and immunity. Despite being classified as an 'orphan' receptor due to the ongoing debate surrounding its endogenous ligands, recent researches have demonstrated that LRH-1 can be modulated by various synthetic ligands. This highlights the potential of LRH-1 as an attractive drug target for the treatment of inflammation, metabolic disorders, and cancer. In this review, we provide an overview of the structural basis, functional activities, associated diseases, and advancements in therapeutic ligand research targeting LRH-1.

2.
Acta Pharmacol Sin ; 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698214

RESUMEN

The retinoic acid receptor-related orphan receptor γ (RORγ) is regarded as an attractive therapeutic target for the treatment of prostate cancer. Herein, we report the identification, optimization, and evaluation of 1,2,3,4-tetrahydroquinoline derivatives as novel RORγ inverse agonists, starting from high throughput screening using a thermal stability shift assay (TSA). The representative compounds 13e (designated as XY039) and 14a (designated as XY077) effectively inhibited the RORγ transcriptional activity and exhibited excellent selectivity against other nuclear receptor subtypes. The structural basis for their inhibitory potency was elucidated through the crystallographic study of RORγ LBD complex with 13e. Both 13e and 14a demonstrated reasonable antiproliferative activity, potently inhibited colony formation and the expression of AR, AR regulated genes, and other oncogene in AR positive prostate cancer cell lines. Moreover, 13e and 14a effectively suppressed tumor growth in a 22Rv1 xenograft tumor model in mice. This work provides new and valuable lead compounds for further development of drugs against prostate cancer.

3.
Acta Pharmacol Sin ; 43(10): 2735-2748, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35264812

RESUMEN

BRD4 plays a key role in the regulation of gene transcription and has been identified as an attractive target for cancer treatment. In this study, we designed 26 new compounds by modifying 3-ethyl-benzo[d]isoxazole core with sulfonamides. Most compounds exhibited potent BRD4 binding activities with ΔTm values exceeding 6 °C. Two crystal structures of 11h and 11r in complex with BRD4(1) were obtained to characterize the binding patterns. Compounds 11h and 11r were effective for BRD4(1) binding and showed remarkable anti-proliferative activity against MV4-11 cells with IC50 values of 0.78 and 0.87 µM. Furthermore, 11r (0.5-10 µM) concentration-dependently inhibited the expression levels of oncogenes including c-Myc and CDK6 in MV4-11 cells. Moreover, 11r (0.5-10 µM) concentration-dependently blocked cell cycle in MV4-11 cells at G0/G1 phase and induced cell apoptosis. Compound 11r may serve as a new lead compound for further drug development.


Asunto(s)
Antineoplásicos , Leucemia Mieloide Aguda , Androstenoles , Antineoplásicos/química , Apoptosis , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Proliferación Celular , Humanos , Isoxazoles/farmacología , Isoxazoles/uso terapéutico , Leucemia Mieloide Aguda/tratamiento farmacológico , Proteínas Nucleares/metabolismo , Relación Estructura-Actividad , Sulfonamidas/farmacología , Sulfonamidas/uso terapéutico , Factores de Transcripción
4.
Acta Pharmacol Sin ; 37(11): 1516-1524, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27374490

RESUMEN

AIM: Retinoic acid receptor-related orphan nuclear receptors (RORs) are orphan nuclear receptors that show constitutive activity in the absence of ligands. Among 3 subtypes of RORs, RORc is a promising therapeutic target for the treatment of Th17-mediated autoimmune diseases. Here, we report novel RORc inverse agonists discovered through structure-based drug design. METHODS: Based on the structure of compound 8, a previously described agonist of RORa, a series of 4-(4-(benzyloxy)phenyl)-3,4-dihydropyrimidin-2(1H)-one derivatives were designed and synthesized. The interaction between the compounds and RORc was detected at molecular level using AlphaScreen assay. The compounds were further examined in 293T cells transfected with RORc and luciferase reporter gene. Thermal stability shift assay was used to evaluate the effects of the compounds on protein stability. RESULTS: A total of 27 derivatives were designed and synthesized. Among them, the compound 22b was identified as the most potent RORc inverse agonist. Its IC50 values were 2.39 µmol/L in AlphaScreen assay, and 0.82 µmol/L in inhibition of the cell-based luciferase reporter activity. Furthermore, the compound 22b displayed a 120-fold selectivity for RORc over other nuclear receptors. Moreover, a molecular docking study showed that the structure-activity relationship was consistent with the binding mode of compound 22b in RORc. CONCLUSION: 4-(4-(Benzyloxy)phenyl)-3,4-dihydropyrimidin-2(1H)-one derivatives are promising candidates for the treatment of Th17-mediated autoimmune diseases, such as rheumatoid arthritis, psoriasis, and multiple sclerosis.


Asunto(s)
Derivados del Benceno/química , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/agonistas , Pirimidinonas/química , Enfermedades Autoinmunes/tratamiento farmacológico , Enfermedades Autoinmunes/inmunología , Derivados del Benceno/síntesis química , Derivados del Benceno/farmacología , Agonismo Inverso de Drogas , Genes Reporteros , Células HEK293 , Humanos , Luciferasas de Renilla/genética , Simulación del Acoplamiento Molecular , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Pirimidinonas/síntesis química , Pirimidinonas/farmacología , Relación Estructura-Actividad , Células Th17/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA