Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
J Environ Sci Health B ; 58(11): 651-658, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37800694

RESUMEN

Rosa roxburghii is a medicinal and edible plant, which is favored by consumers due to its rich vitamin C content. Residues and potential health risks of difenoconazole in the R. roxburghii ecosystem has aroused a concern considering its extensive use for controlling the powdery mildew of R. roxburghii. In this study, the residue of difenoconazole in R. roxburghii and soil was extracted by acetonitrile, purified by primary secondary amine and detected by liquid chromatography-tandem triple quadrupole mass spectrometry. The average recoveries in R. roxburghii and soil matrix varied from 82.59% to 99.63%, with relative standard deviations (RSD) of 1.14%-8.23%. The limit of quantification (LOQ) and detection (LOD) of difenoconazole in R. roxburghii and soil samples were 0.01 mg/kg. The dissipation of difenoconazole followed well the first-order kinetic, with a half-life of 3.99-5.57 d in R. roxburghii and 4.94-6.23 d in soil, respectively. And the terminal residues were <0.01-2.181 mg/kg and 0.014-2.406 mg/kg, respectively. The chronic and acute risk quotient values of difenoconazole were respectively 0.42% and 4.1%, which suggests that the risk was acceptable and safe to consumers. This study provides a reference for the safe and reasonable use of difenoconazole in R. roxburghii production.


Asunto(s)
Fungicidas Industriales , Residuos de Plaguicidas , Rosa , Fungicidas Industriales/análisis , Ecosistema , Espectrometría de Masas en Tándem/métodos , Suelo/química , Medición de Riesgo , Residuos de Plaguicidas/análisis
2.
Bull Environ Contam Toxicol ; 111(4): 49, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37752322

RESUMEN

This study aimed to investigate the dissipation, residues and dietary assessment of kresoxim-methyl in the application of Rosa Roxburghii and soil field using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The results show that kresoxim-methyl in R. roxburghii samples was extracted by acetonitrile and purified by ethyl enediamine-N-propylsilane (PSA), while kresoxim-methyl in soil samples was extracted by acetonitrile and purified by octadecylsilyl solid phase dispersant (C18). 0.1% formic acid (v/v)-water-methanol solution was used as the mobile phase, LC-MS/MS exhibited a good linearity in the range of 0.001-10 mg L-1. The recoveries of R. roxburghii and soil matrix were 82.48%-102.55%, and the relative standard deviation (RSD) were 1.13%-4.21%. The limit of detection (LOD) and quantification (LOQ) of kresoxim-methyl in R. roxburghii and soil samples was 0.50 and 0.60 µg kg-1, respectively. The dissipation dynamics of kresoxim-methyl in R. roxburghii and soil followed the first-order kinetics, with the half-life of 4.28 and 4.41 days, respectively. The terminal residual amount of kresoxim-methyl in R. roxburghii and soil samples was 0.003-1.764 and 0.007-2.091 mg kg-1, respectively. The dietary intake risk assessment indicates that a risk quotient (RQ) for kresoxim-methyl based on the national estimated daily intake (NEDI) of 0.1995 mg was 0.79%, suggesting that the use of kresoxim-methyl on R. roxburghii at recommended dosage was safe to consumers. This study provides the theoretical basis for guiding the rational use of kresoxim-methyl in the production of R. roxburghii.


Asunto(s)
Rosa , Cromatografía Liquida , Espectrometría de Masas en Tándem , Acetonitrilos , Suelo
3.
Arch Virol ; 167(2): 625-630, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35013817

RESUMEN

Bidens pilosa is a weed species that invades crop areas in tropical and subtropical regions. To date, only two potyviruses have been reported to infect B. pilosa. Here, we report the complete genome sequence of a tomato zonate spot tospovirus (TZSV) isolate from Bidens named TZSV-Bidens. The tripartite RNA of the TZSV-Bidens genome contains L, M, and S segments that are 8912, 4724, and 2997 nt in length, respectively. The genome contains five open reading frames (ORFs), with 92.23-95.01% amino acid sequence identity to the TZSV-YN isolate. Phylogenetic analysis based on amino acid sequences of members of the family Tospoviridae showed that TZSV-Bidens was grouped into a well-supported Eurasian cluster. The intergenic regions (IGRs) of the M and S RNAs are among the most variable regions and are far shorter than those of the TZSV-YN reference genome.


Asunto(s)
Bidens , Solanum lycopersicum , Tospovirus , Filogenia , Enfermedades de las Plantas
4.
Plant Dis ; 106(1): 289-296, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34515502

RESUMEN

Rice false smut (RFS) is a destructive disease of rice worldwide caused by Ustilaginoidea virens. Nevertheless, there is a lack of efficient and stable artificial inoculation method to simulate the natural infection of U. virens, which is an important factor limiting further research on the pathogen. The purpose of this study was to establish an artificial inoculation method, which can simulate the natural infection process of U. virens without destroying the panicle sheath structure of rice. In this research, rice plants were inoculated by soaking roots at the seedling stage, spraying at the tillering stage, injecting at the booting stage, and again spraying at the flowering stage to determine the appropriate artificial inoculation time. Meanwhile, the panicle sheath instillation method and the injection inoculation method were compared. The results show that stages 6 to 8 of young panicle differentiation are an important period for U. virens infection. There were no significant differences in the mean rates of infected panicles, mean rates of infected grains, and maximum infected grains per panicle between the two inoculation methods. However, the frequency of RFS ball occurrence at the upper part of the panicles was significantly higher on the spikelets inoculated by the injection method than that of spikelets inoculated by natural infection and panicle sheath instillation. Therefore, panicle sheath instillation method was more similar to the natural infection of U. virens in the field. This research exhibited an innovative artificial inoculation method for identification of U. virens pathogenicity and evaluation of rice resistance against RFS.


Asunto(s)
Hypocreales , Oryza , Ustilaginales , Enfermedades de las Plantas
5.
Pestic Biochem Physiol ; 178: 104942, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34446208

RESUMEN

Rice sheath blight is a destructive fungal disease caused by Rhizoctonia solani. To find a safe and green measure, the biological activity of six plant extracts against R. solani was determined by mycelial growth rate method. The results showed that magnolol possessed better antifungal activities against R. solani, with an EC50 value of 7.47 mg/L. further action mechanism of magnolol against R. solani was carried out. Studies by scanning electron microscopy (SEM) showed that the morphology of R. solani mycelia was deformation and surface folds. Transmission electron microscope (TEM) observation on treated R. solani showed that magnolol could induce cytoplasmic membrane rupture and cytoplasmic membrane even disappeared completely accompanied with cellular debris was covered around this fungal, and the mycelia treated with magnolol showed fluorescence after PI staining. Further study showed that the content of malondialdehyde (MDA) and activity of chitinase, ß-1,3-glucanase and relative conductivity of mycelia were increased, while the content of soluble protein and activities of catalase (CAT), polyphenol oxidase (PPO), superoxide dismutase (SOD), succinate dehydrogenase (SDH) and NAD-malate dehydrogenase (NAD-MDH) were significantly decreased. These results indicated that magnolol could significantly damage the plasma membrane of R. solani, and interfere with cell respiratory metabolism, thus inhibiting the growth of mycelium.


Asunto(s)
Enfermedades de las Plantas , Rhizoctonia , Compuestos de Bifenilo , Membrana Celular , Lignanos
6.
Molecules ; 26(6)2021 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-33802719

RESUMEN

Plant diseases reduce crop yield and quality, hampering the development of agriculture. Fungicides, which restrict chemical synthesis in fungi, are the strongest controls for plant diseases. However, the harmful effects on the environment due to continued and uncontrolled utilization of fungicides have become a major challenge in recent years. Plant-sourced fungicides are a class of plant antibacterial substances or compounds that induce plant defenses. They can kill or inhibit the growth of target pathogens efficiently with no or low toxicity, they degrade readily, and do not prompt development of resistance, which has led to their widespread use. In this study, the growth inhibition effect of 24 plant-sourced ethanol extracts on rice sprigs was studied. Ethanol extract of gallnuts and cloves inhibited the growth of bacteria by up to 100%. Indoor toxicity measurement results showed that the gallnut and glove constituents inhibition reached 39.23 µg/mL and 18.82 µg/mL, respectively. Extract treated rice sprigs were dry and wrinkled. Gallnut caused intracellular swelling and breakage of mitochondria, disintegration of nuclei, aggregation of protoplasts, and complete degradation of organelles in hyphae and aggregation of cellular contents. Protection of Rhizoctonia solani viability reached 46.8% for gallnut and 37.88% for clove in water emulsions of 1000 µg/mL gallnut and clove in the presence of 0.1% Tween 80. The protection by gallnut was significantly stronger than that of clove. The data could inform the choice of plant-sourced fungicides for the comprehensive treatment of rice sprig disease. The studied extract effectively protected rice sprigs and could be a suitable alternative to commercially available chemical fungicides. Further optimized field trials are needed to effectively sterilize rice paddies.


Asunto(s)
Mezclas Complejas/farmacología , Oryza/efectos de los fármacos , Extractos Vegetales/farmacología , Rhizoctonia/efectos de los fármacos , Rhus/química , Syzygium/química , Cromatografía por Intercambio Iónico , Mezclas Complejas/toxicidad , Etanol/química , Eugenol/análisis , Fungicidas Industriales/farmacología , Ácidos Láuricos/análisis , Espectrometría de Masas , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Mitocondrias/efectos de los fármacos , Mitocondrias/ultraestructura , Micelio/efectos de los fármacos , Micelio/ultraestructura , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Extractos Vegetales/toxicidad
7.
J Environ Manage ; 255: 109848, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-31756580

RESUMEN

Dimethachlon is a hazardous xenobiotic which poses a potential risk on the ecosystem and human health after foliar spray for mitigating fungal diseases of crops. A novel dimethachlon-degrading strain was isolated and identified as Brevundimonas naejangsanensis J3. Free cells and enzymes of this strain could rapidly eliminate 75 mg/L dimethachlon in liquid medium, especially the latter (>90% of degradation efficiency). Strain J3 completely metabolized dimethachlon by an ideally transformed pathway. Immobilization cells and enzymes exhibited better stability and adaptability for the repeated use, as compared with free cells and enzymes. In laboratory, 68.03 and 65.13%, or 82.67 and 95.41% of dimethachlon were eliminated from non-sterile soils by free or immobilized cells and enzymes within 7 d, respectively. Under the field condition, 95.78 and 98.01% of 20.250 kg a.i./ha dimethachlon wettable powder from soils were degraded by immobilized cells and enzymes in 9 d respectively, which were significant higher than the degradation efficiencies of free cells and enzymes (78.81 and 67.25%). This study highlights immobilized cells and enzymes from strain J3 can be applicable for bioremediating dimethachlon-contaminated soils.


Asunto(s)
Ecosistema , Suelo , Caulobacteraceae , Clorobencenos , Humanos , Succinimidas
8.
Molecules ; 25(9)2020 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-32353929

RESUMEN

The brown planthopper (BPH), Nilaparvata lugens (Stål), is the most notorious rice insect pest. In order to repel BPH effectively while being environmentally friendly, a new film based on guar gum incorporated with citral (GC film) was formulated. A toxicity bioassay of citral and guar gum at different proportions (ratios of 3:1, 2:1, 1:1, 1:2, and 1:3 in w/w) of GC film-forming emulsion to BPH was performed with the rice stem dipping method. Results showed that the most effective ratio of citral to guar gum was 1:1 with the median lethal concentration (LC50) of 4.30 mg/mL, far below the LC50 of guar gum (GG)/citral individual (141.51 and 44.38 mg/mL, respectively). The mortality of BPH adults and nymphs in the third instar treated with different dilution multiples of GC film-forming emulsion ranged from 46.67% to 82.22% and from 37.78% to 71.11%, respectively. These indicated that GC film-forming emulsion had a direct toxicity on BPH, and the mixture of citral and GG had synergistic interactions. Subsequently, Fourier-transform infrared spectroscopy showed that the incorporation of guar gum with citral was successful and did not result in the formation of new chemical bonds. The GC film exhibited a darker color and rougher surface topography with larger apertures and deeper gullies (Ra = 1.42 nm, Rq = 2.05 nm, and Rmax = 25.40 nm) compared to the guar gum film (GG film) (Ra = 1.00 nm, Rq = 1.33 nm, and Rmax = 16.40 nm), as determined by transmission electron microscopy and atomic force microscopy. The GC film exhibited a 50.4% lower solubility in water (30.30% vs. 15.00%) and 71.3% oxygen permeability (8.26 × 10-9 vs. 2.37 × 10-9 cm3/m2·d·Pa) (p < 0.05) but did not demonstrate any significant difference in mechanical properties, such as thickness (39.10 vs. 41.70 mm), tensile strength (41.89 vs. 38.30 N/mm2), and elongation at break (1.82% vs. 2.03%) (p < 0.05) compared to the GG film. Our findings established a link between physicochemical properties and bioactivity, which can provide useful information on developing and improving GC films and may offer an alternative approach for the control of BPH in the near future.


Asunto(s)
Monoterpenos Acíclicos/farmacología , Galactanos/química , Hemípteros/efectos de los fármacos , Mananos/química , Oryza , Gomas de Plantas/química , Animales , Emulsiones , Herbivoria , Ensayo de Materiales , Microscopía de Fuerza Atómica , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Ninfa/efectos de los fármacos , Aceites Volátiles/química , Oxígeno/química , Permeabilidad , Solubilidad , Espectroscopía Infrarroja por Transformada de Fourier , Resistencia a la Tracción
9.
Pestic Biochem Physiol ; 118: 19-25, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25752425

RESUMEN

Given the importance of finding alternatives to synthetic fungicides, the antifungal effects of natural product citral on six plant pathogenic fungi (Magnaporthe grisea, Gibberella zeae, Fusarium oxysporum, Valsa mali, Botrytis cinerea, and Rhizoctonia solani) were determined. Mycelial growth rate results showed that citral possessed high antifungal activities on those test fungi with EC50 values ranging from 39.52 to 193.00 µg/mL, which had the highest inhibition rates against M. grisea. Further action mechanism of citral on M. grisea was carried out. Citral treatment was found to alter the morphology of M. grisea hyphae by causing a loss of cytoplasm and distortion of mycelia. Moreover, citral was able to induce an increase in chitinase activity in M. grisea, indicating disruption of the cell wall. These results indicate that citral may act by disrupting cell wall integrity and membrane permeability, thus resulting in physiology changes and causing cytotoxicity. Importantly, the inhibitory effect of citral on M. grisea appears to be associated with its effects on mycelia reducing sugar, soluble protein, chitinase activity, pyruvate content, and malondialdehyde content.


Asunto(s)
Litsea/química , Magnaporthe/efectos de los fármacos , Monoterpenos/farmacología , Enfermedades de las Plantas/microbiología , Extractos Vegetales/farmacología , Monoterpenos Acíclicos , Pared Celular/efectos de los fármacos , Pared Celular/metabolismo , Quitinasas/metabolismo , Proteínas Fúngicas/metabolismo , Hongos/efectos de los fármacos , Hongos/crecimiento & desarrollo , Fungicidas Industriales/farmacología , Magnaporthe/enzimología , Magnaporthe/crecimiento & desarrollo
10.
Molecules ; 19(7): 10279-90, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-25029074

RESUMEN

In order to find a natural alternative to the synthetic fungicides currently used against the devastating rice blast fungus, Magnaporthe grisea, this study explored the antifungal potential of citral and its mechanism of action. It was found that citral not only inhibited hyphal growth of M. grisea, but also caused a series of marked hyphal morphological and structural alterations. Specifically, citral was tested for antifungal activity against M. grisea in vitro and was found to significantly inhibit colony development and mycelial growth with IC50 and IC90 values of 40.71 and 203.75 µg/mL, respectively. Furthermore, citral reduced spore germination and germ tube length in a concentration-dependent manner. Following exposure to citral, the hyphal cell surface became wrinkled with folds and cell breakage that were observed under scanning electron microscopy (SEM). There was damage to hyphal cell walls and membrane structures, loss of villous-like material outside of the cell wall, thinning of the cell wall, and discontinuities formed in the cell membrane following treatment based on transmission electron microscopy (TEM). This increase in chitinase activity both supports the morphological changes seen in the hyphae, and also suggests a mechanism of action. In conclusion, citral has strong antifungal properties, and treatment with this compound is capable of causing significant damage to the hyphal cell walls of M. grisea.


Asunto(s)
Productos Biológicos/farmacología , Pared Celular/efectos de los fármacos , Fungicidas Industriales/farmacología , Hifa/efectos de los fármacos , Magnaporthe/efectos de los fármacos , Monoterpenos/farmacología , Monoterpenos Acíclicos , Quitinasas/metabolismo , Relación Dosis-Respuesta a Droga , Activadores de Enzimas/farmacología , Hifa/enzimología , Hifa/ultraestructura , Magnaporthe/enzimología , Magnaporthe/ultraestructura , Viabilidad Microbiana/efectos de los fármacos
11.
Artículo en Inglés | MEDLINE | ID: mdl-38875459

RESUMEN

Rosa roxburghii (R. roxburghii) is a unique, edible, medicinal fruit rich in vitamin C found in Southwest China. Triadimefon (TDF) is a triazole fungicide that is widely used to control powdery mildew in R. roxburghii. To assess the safety of TDF in R. roxburghii, an LC-MS/MS method was developed for the simultaneous quantification of TDF and its major metabolite, triadimenol (TDN) in R. roxburghii. Both TDF and TDN showed high correlation coefficients (>0.999) for the solvent- and matrix-matched calibrations. The recovery rates of TDF and TDN in R. roxburghii ranged from 90.18% to 100.42%, with a relative standard deviation (RSD) of 1.25%-9.22%. The limit of quantification (LOQ) was 0.01 mg·kg-1. The half-life of TDF in R. roxburghii was between 2.74 and 3.07 days, with terminal residues ranging from < LOQ to 1.84 mg·kg-1. Recommended maximum residue limits (MRLs) and safe pre-harvest intervals (PHIs) for TDF in R. roxburghii were 0.5 mg·kg-1 and 21 days, respectively. This study provides essential data for TDF's safe and judicious use in R. roxburghii production.

12.
Materials (Basel) ; 16(3)2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36770285

RESUMEN

Considering the elastic-plastic deformation, the wave propagations and energy transmissions of the one-dimensional three-segment composite granular chain are studied. The axial symmetry model for elastic-perfectly plastic materials is built by using the finite element method. Six materials with different yield strengths are selected for the adjustable segment. The results show that the repeated loading and unloading behaviors, as well as the wave propagations in the elastic-plastic granular chain, are complex and significantly different from those in the purely elastic granular chain. The yield strength of the granular materials in the adjustable segment has significant effects on energy dissipation and wave velocity, which could be used to design the impact buffer. The studies show that taking lower yield strength for the adjustable part than the non-adjustable part, the energy dissipation could be increased, and the wave velocity could be reduced, then the arrival time of the impact waves could be delayed. These characteristics of the elastic-plastic granular chain could be used to design metamaterials for impact absorbers in impact protection.

13.
Foods ; 12(15)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37569143

RESUMEN

3,4-dichloroaniline (3,4-DCA) and 3,5-dichloroaniline (3,5-DCA) are, respectively, the primary metabolites deriving from the breakdown of phenylurea herbicides and dicarboximide fungicides in both soils and plants, whose residues in vegetable products have a heightened concern considering their higher health risks to humans and greater toxicity than the parent compounds in the environment. In this study, a sensitive high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method was developed for the simultaneous determination of 3,4-DCA and 3,5-DCA residues in chive products based on the optimization of HPLC-MS/MS chromatographic and mass-spectrometric conditions using the standard substances and the modified QuEChERS preparation technique. The preparation efficiency of 3,4-DCA and 3,5-DCA from chive samples showed that acetonitrile was the best extractant. The combination of the purification agent graphite carbon black + primary secondary amine and the eluting agent acetonitrile + toluene (4:1, v/v) had a satisfactory purification effect. The linear correlation coefficients (R2) were more than 0.996 with the six concentration range of 0.001-1.000 mg/L for 3,4-DCA and 3,5-DCA. The limit of detection and limit of quantitation of this method was 0.6 and 2.0 µg/kg for 3,4-DCA, as well as 1.0 and 3.0 µg/kg for 3,5-DCA, respectively. The matrix effect range of 3,4-DCA and 3,5-DCA in chive tissues was from -9.0% to -2.6% and from -4.4% to 2.3%, respectively. The fortified recovery of 3,4-DCA and 3,5-DCA in chive samples at four spiked levels of 0.001-1.000 mg/kg was 75.3-86.0% and 78.2-98.1%, with the relative standard deviation of 2.1-8.5% and 1.4-11.9%, respectively. The limit of detection (LOD) and limit of quantification (LOQ) of the method were 0.6, 2.0, and 1.0, 3.03 for 4-DCA and 3,5-DCA, respectively. This study highlights that the analytical method established here can efficiently and sensitively detect residues of 3,4-DCA and 3,5-DCA residues for monitoring chive products. The method was successfully applied to 60 batches of actual vegetable samples from different regions.

14.
Microorganisms ; 11(10)2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37894053

RESUMEN

This study aims to determine the effects of the natural product aloesin against Magnaporthe oryzae. The results exposed that aloesin had a high inhibitory effect on appressorium formation (the EC50 value was 175.26 µg/mL). Microscopic examination revealed that 92.30 ± 4.26% of M. oryzae spores could be broken down by 625.00 µg/mL of aloesin, and the formation rate of appressoria was 4.74 ± 1.00% after 12 h. M. oryzae mycelial growth was weaker than that on the control. The enzyme activity analysis results indicated that aloesin inhibited the activities of polyketolase (PKS), laccase (LAC), and chain-shortening catalytic enzyme (Aayg1), which are key enzymes in melanin synthesis. The inhibition rate by aloesin of PKS, LAC, and Aayg1 activity was 32.51%, 33.04%, and 43.38%, respectively. The proteomic analysis showed that actin expression was downregulated at 175.62 µg/mL of aloesin, which could reduce actin bundle formation and prevent the polar growth of hyphae in M. oryzae. This is the first report showing that aloesin effectively inhibits conidia morphology and appressorium formation in M. oryzae.

15.
J Hazard Mater ; 450: 131091, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36870095

RESUMEN

Butylated hydroxytoluene (BHT), as an emerging contaminant in ecosystems, has potential influences on animals, aquatic organisms, and public health, and has been proven to be a major allelochemical of Pinellia ternata. In this study, Bacillus cereus WL08 was used to rapidly degrade BHT in liquid culture. Strain WL08 immobilized on tobacco stem charcoal (TSC) particles notably accelerated BHT removal in contract to its free cells, and exhibited excellent reutilization and storage capacities. The optimal removal parameters of TSC WL08 were ascertained to be pH 7.0, 30 °C, 50 mg L-1 BHT and 0.14 mg L-1 TSC WL08. Moreover, TSC WL08 significantly accelerated the degradation of 50 mg L-1 BHT in sterile and non-sterile soils compared to that of free WL08 or natural dissipation, and notably shortened their half-lives by 2.47- or 362.14- fold, and 2.20- or 14.99- fold, respectively. Simultaneously, TSC WL08 was introduced into the continuous cropping soils of P. ternata, which accelerated the elimination of allelochemical BHT, and notably enhanced the photosynthesis, growth, yield, and quality of P. ternata. This study provides new insights and strategies for the rapid in situ remediation of BHT-polluted soils and effective alleviation of P. ternata cropping obstacles.


Asunto(s)
Pinellia , Suelo , Animales , Suelo/química , Hidroxitolueno Butilado/metabolismo , Bacillus cereus , Pinellia/química , Pinellia/metabolismo , Carbón Orgánico/metabolismo , Nicotiana , Ecosistema
16.
Front Microbiol ; 14: 1228597, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37637108

RESUMEN

Introduction: Rice false smut caused by Ustilaginoidea virens, is a destructive fungal disease encountered in many rice-producing areas worldwide. To determine the process by which U. virens infects rice spikelets in the field. Methods: The green fluorescent protein-labeled U. virens was used as an inoculum to conduct artificial inoculation on rice at the booting stage via non-destructive panicle sheath instillation inoculation. Results: The results showed that the conidia of U. virens germinated on the surface of rice glumes and produced hyphae, which clustered at the mouth of rice glumes and entered the glumes through the gap between the palea and lemma. The conidia of U. virens colonized in rice floral organs, which led to pollen abortion of rice. U. virens wrapped the whole rice floral organ, and the floral organ-hyphae complex gradually expanded to open the glumes to form a rice false smut ball, which was two to three times larger than that observed in normal rice. Discussion: Panicle sheath instillation inoculation was shown to be a non-destructive inoculation method that could simulate the natural infection of U. virens in the field. The entire infection process of U. virens was visualized, providing a theoretical reference for formulating strategies to control rice false smut in the field.

17.
Biomolecules ; 13(3)2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36979491

RESUMEN

Autophagy is a highly conserved process in eukaryotes that degrades and recycles damaged cells in plants and is involved in plant growth, development, senescence, and resistance to external stress. Top-rot disease (TRD) in Rosa roxburghii fruits caused by Colletotrichum fructicola often leads to huge yield losses. However, little information is available about the autophagy underlying the defense response to TRD. Here, we identified a total of 40 R. roxburghii autophagy-related genes (RrATGs), which were highly homologous to Arabidopsis thaliana ATGs. Transcriptomic data show that RrATGs were involved in the development and ripening processes of R. roxburghii fruits. Gene expression patterns in fruits with different degrees of TRD occurrence suggest that several members of the RrATGs family responded to TRD, of which RrATG18e was significantly up-regulated at the initial infection stage of C. fructicola. Furthermore, exogenous calcium (Ca2+) significantly promoted the mRNA accumulation of RrATG18e and fruit resistance to TRD, suggesting that this gene might be involved in the calcium-mediated TRD defense response. This study provided a better understanding of R. roxburghii autophagy-related genes and their potential roles in disease resistance.


Asunto(s)
Arabidopsis , Rosa , Rosa/genética , Calcio/metabolismo , Frutas/metabolismo , Perfilación de la Expresión Génica , Arabidopsis/genética , Autofagia/genética
18.
Foods ; 12(5)2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36900567

RESUMEN

Rosa roxburghii tratt (R. roxburghii) is an important plant resource that is widely distributed in the southwest of China and favored by consumers due to its high nutritional value and healthy functions. Meanwhile, it is a traditional edible and medicinal plant in China. With the deepening research of R. roxburghii, more and more bioactive components and its health care and medicinal value have been discovered and developed in recent years. This review summarizes and discusses the recent advances on main active ingredients such as vitamin, protein, amino acid, superoxide dismutase, polysaccharide, polyphenol, flavonoid, triterpenoid and mineral, and pharmacological activities including antioxidant activity, immunomodulatory activity, anti-tumor activity, glucose and lipid metabolism regulation, anti-radiation effect, detoxification effect, and viscera protection of R. roxbughii, as well as its development and utilization. The research status and existing problems of R. roxburghii development and quality control are also briefly introduced. This review ends with some suggestions on the perspectives and directions for future research and potential applications of R. roxbughii.

19.
ACS Omega ; 8(4): 4209-4219, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36743034

RESUMEN

Good control effects on fall armyworm (FAW) can be obtained by broadcasting emamectin benzoate (EB) granules into maize leaf whorls. However, the distribution of EB in maize plants is not clear. In this study, EB granules were prepared by the rotating granulation method, and the granules were characterized using a Fourier transform infrared spectrometer. The behavior of EB granules in water was observed using a microscope, and in vitro release of EB from granules was also studied. A method for the determination of EB in maize plants, old leaves, grains, and cobs was established by using ultra-performance liquid chromatography-tandem mass spectrometry. The results showed that EB was loaded in granules successfully, and the granules disintegrated slowly in water, so the release of granules could be regulated using various water contents. The prepared EB granules were qualified and stable. The field experiment showed that the concentration of EB in maize leaf whorls could be maintained above 0.23 mg·kg-1 within 3 days after broadcasting EB granules. This ensured that FAW could be killed in a short time. Then, EB gradually transferred to the old leaves. After 21 days of application, the content of EB in the old leaves was 0.07 mg·kg-1, which has long-time control effects on FAW. The control effects of the three doses of granules against Spodoptera frugiperda were higher than 78% after 14 days of application. At the tested dosage, no phytotoxicity to crops was observed. At harvest, neither the maize grain nor the cobs had EB content. New controlled formulations to S. frugiperda were developed and will be suitable for application in mountainous areas where the lack of water resources is a factor.

20.
Plants (Basel) ; 12(7)2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37050144

RESUMEN

This study aimed to gain an understanding of the possible function of NACs by examining their physicochemical properties, structure, chromosomal location, and expression. Being a family of plant-specific transcription factors, NAC (petunia no apical meristem and Arabidopsis thaliana ATAF1, ATAF2, and CUC2) is involved in plant growth and development. None of the NAC genes has been reported in Akebia trifoliata (Thunb.) Koidz (A. trifoliata). In this study, we identified 101 NAC proteins (AktNACs) in the A. trifoliata genome by bioinformatic analysis. One hundred one AktNACs were classified into the following twelve categories based on the phylogenetic analysis of NAC protein: NAC-a, NAC-b, NAC-c, NAC-d, NAC-e, NAC-f, NAC-g, NAC-h, NAC-i, NAC-j, NAC-k, and NAC-l. The accuracy of the clustering results was demonstrated based on the gene structure and conserved motif analysis of AktNACs. In addition, we identified 44 pairs of duplication genes, confirming the importance of purifying selection in the evolution of AktNACs. The morphology and microstructure of early A. trifoliata seed development showed that it mainly underwent rapid cell division, seed enlargement, embryo formation and endosperm development. We constructed AktNACs co-expression network and metabolite correlation network based on transcriptomic and metabolomic data of A. trifoliata seeds. The results of the co-expression network showed that 25 AtNAC genes were co-expressed with 233 transcription factors. Metabolite correlation analysis showed that 23 AktNACs were highly correlated with 28 upregulated metabolites. Additionally, 25 AktNACs and 235 transcription factors formed co-expression networks with 141 metabolites, based on correlation analysis involving AktNACs, transcription factors, and metabolites. Notably, AktNAC095 participates in the synthesis of 35 distinct metabolites. Eight of these metabolites, strongly correlated with AktNAC095, were upregulated during early seed development. These studies may provide insight into the evolution, possible function, and expression of AktNACs genes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA