RESUMEN
Homogalacturonan (HG) is the main component of pectins. HG methylesterification has recently emerged as a key determinant controlling cell attachment, organ formation, and phyllotaxy. However, whether and how HG methylesterification affects intercellular metabolite transport has rarely been reported. Here, we identified and characterized knockout mutants of the rice (Oryza sativa) OsQUA2 gene encoding a putative pectin methyltransferase. Osqua2 mutants exhibit a remarkable decrease in the degree of methylesterification of HG in the culm-sieve element cell wall and a markedly reduced grain yield. The culm of Osqua2 mutant plants contains excessive sucrose (Suc), and a 13CO2 feeding experiment showed that the Suc overaccumulation in the culm was caused by blocked Suc translocation. These and other findings demonstrate that OsQUA2 is essential for maintaining a high degree of methylesterification of HG in the rice culm-sieve element cell wall, which may be critical for efficient Suc partitioning and grain filling. In addition, our results suggest that the apoplastic pathway is involved in long-distance Suc transport in rice. The identification and characterization of the OsQUA2 gene and its functionality revealed a previously unknown contribution of HG methylesterification and provided insight into how modification of the cell wall regulates intercellular transport in plants.
Asunto(s)
Metiltransferasas/metabolismo , Oryza/enzimología , Pectinas/metabolismo , Proteínas de Plantas/metabolismo , Sacarosa/metabolismo , Dióxido de Carbono/metabolismo , Comunicación Celular , Pared Celular/metabolismo , Esterificación , Genes Reporteros , Aparato de Golgi/metabolismo , Metiltransferasas/química , Metiltransferasas/genética , Mutación/genética , Fenotipo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Haz Vascular de Plantas/metabolismo , Plantas Modificadas Genéticamente , Semillas/crecimiento & desarrollo , Fracciones Subcelulares/metabolismoRESUMEN
Organ growth involves the coordination of cell proliferation and cell growth with differentiation. Endoreduplication is correlated with the onset of cell differentiation and with cell and organ size, but little is known about the molecular mechanisms linking cell and organ growth with endoreduplication. We have previously demonstrated that the ubiquitin receptor DA1 influences organ growth by restricting cell proliferation. Here, we show that DA1 and its close family members DAR1 and DAR2 are redundantly required for endoreduplication during leaf development. DA1, DAR1, and DAR2 physically interact with the transcription factors TCP14 and TCP15, which repress endoreduplication by directly regulating the expression of cell-cycle genes. We also show that DA1, DAR1, and DAR2 modulate the stability of TCP14 and TCP15 proteins in Arabidopsis thaliana. Genetic analyses demonstrate that DA1, DAR1, and DAR2 function in a common pathway with TCP14/15 to regulate endoreduplication. Thus, our findings define an important genetic and molecular mechanism involving the ubiquitin receptors DA1, DAR1, and DAR2 and the transcription factors TCP14 and TCP15 that links endoreduplication with cell and organ growth.
Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Endorreduplicación , Ubiquitina/metabolismo , Secuencias de Aminoácidos , Proteínas de Unión al ADN/metabolismo , Proteínas con Dominio LIM/metabolismo , Modelos Biológicos , Especificidad de Órganos , Desarrollo de la Planta , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Unión Proteica , Estabilidad Proteica , Factores de Transcripción/metabolismoRESUMEN
Control of organ size by cell proliferation and cell expansion is a fundamental process in plant development, but little is known about the genetic and molecular mechanisms that determine organ size in plants. To understand the genetic and molecular mechanisms of organ growth control, we isolate a set of mutants with altered leaf size and identify the narrow leaf mutant, zhaiye 17 (zy17) (zhaiye means narrow leaf in Chinese). zy17 exhibits narrow leaves, slightly short plants, small panicles, reduced panicle branches and decreased grain numbers per panicle compared with the wild type. Our cytological analyses show that the narrow leaf phenotype of zy17 is caused by the reduced number of cells, indicating that ZY17 regulates cell proliferation. Genetic analyses show that the zy17 mutant phenotypes are controlled by a single gene. Using the whole genome resequencing approach and linkage analysis, we identify Os02g22390, Os02g28280 and Os02g29530 as candidate genes. Os02g22390 encodes a retrotransposon protein with the mutation occurring in the intronic region; Os02g28280 encodes a protein with unknown function with a base substitution resulting in non-synonymous mutation; Os02g29530 encodes a protein containing the PFAM domain related to glycosyltransferase, with a 2 bp deletion mutation causing a premature termination. Further studies on these three candidate genes will be helpful for understanding the molecular mechanism of organ size control in rice.
Asunto(s)
Genes de Plantas , Mutación , Oryza/genética , Hojas de la Planta/genética , Polimorfismo de Nucleótido SimpleRESUMEN
Given the rising domestic demand and increasing global prices of corn and soybean, China is looking for alternatives for these imports to produce animal fodder. Kenaf (Hibiscus cannabinus L.) has great potential as a new forage source, due to abundant proteins, phenols and flavonoids in its leaves. However, few studies have evaluated the mechanism of protein synthesis in kenaf leaves. In the current work, compared with kenaf material "L332," the percentage of crude protein content in leaves of material "Q303" increased by 6.13%; combined with transcriptome and proteome data, the kenaf samples were systematically studied to obtain mRNA-protein correlation. Then, the genes/proteins related to protein synthesis in the kenaf leaves were obtained. Moreover, this work detected mRNA expression of 20 differentially expressed genes (DEGs). Meanwhile, 20 differentially expressed proteins (DEPs) related to protein synthesis were performed parallel reaction monitoring. Fructose-1,6-bisphosphatase (FBP), nitrite reductase (NirA), prolyl tRNA synthase (PARS) and glycine dehydrogenase (GLDC) presented increased mRNA and protein levels within kenaf leaves with high protein content. Based on the obtained findings, FBP, NirA, PARS, and GLDC genes may exert a vital function in the protein synthesis of kenaf leaves. The results provide a new idea for further studying the potential genes affecting the quality trait of protein content in kenaf leaves and provide gene resources and a theoretical foundation for further cultivating high protein kenaf varieties.
RESUMEN
Jute (Corchorus capsularis L.) is one of the most important sources of natural fibre. Drought is among the main factors affecting the production of jute. It is essential for drought tolerance improvement to discover the genes associated with jute development during drought stress. In this study, we analyzed the transcriptome of jute under drought stress and identified new genes involved in drought stress response. In total, 120,219 transcripts with an average length of 764 bp were obtained, these transcripts included 94,246 unigenes (average length, 622 bp). Differentially expressed genes (DEGs) were discovered in drought stress (1329), among which 903 genes showed up-regulated expression, while 426 genes showed down-regulated expression. GO enrichment analyses indicated most of the enriched biological pathways were biosynthesis pathways of organic ring compounds and cellular nitrogen compounds. KEGG enrichment analyses indicated 573 DEGs were involved in 157 metabolic pathways. RT-qPCR experiments indicated that the expression trends were consistent with the results of the high-throughput sequencing. Over-expression of no apical meristem (NAM) -2-like gene increased drought tolerance and knockdown plants were drought sensitive. It has expression peaks after 6 h of drought stress and regulate 3-ketoacyl-CoA synthase gene expression. Yeast-2-Hybrid assays validated the physical interaction between NAM-2-like protein and KCS. The results provide relatively comprehensive information regarding genes and metabolic pathways that lays the foundation for the breeding of drought-resistant varieties, and represent the first identification of NAM-2-like gene and provides new insight into the regulatory network of drought tolerance in Corchorus capsularis L.
Asunto(s)
Corchorus , Vías Biosintéticas , Sequías , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Fitomejoramiento , Estrés Fisiológico , TranscriptomaRESUMEN
Drought is the main factor that significantly affects plant growth and has devastating effects on crop production of jute. NAC (NAM, ATAF, and CUC2) transcription factors (TFs) are a large gene family in plants that have been shown to play many important roles in regulating developmental processes and abiotic stress resistance. In this study, a NAC transcription factor, CcNAC1, was cloned and characterized its function in jute. RT-qPCR analysis showed that CcNAC1 expression peaks after 8 h of drought stress. CcNAC1 overexpression and knockdown plants were created by Agrobacterium-mediated genetic transformation. PCR and southern hybridization results indicate that the CcNAC1 gene was integrated into the genome of jute. Overexpression of the CcNAC1 gene sped up the plant growth, promoted early flowering, and increased drought tolerance compared to the control plants. 3-Ketoacyl-CoA synthase (KCS) gene expression level increased significantly in the CcNAC1-overexpression plants and decreased in knockdown plants, which showed that CcNAC1 transcription factor regulated KCS gene expression. Yeast-2-Hybrid (Y2H) assays validated the physical interaction between CcNAC1 and KCS. The results provide relatively comprehensive information on the molecular mechanisms of CcNAC1 gene underlying the regulation of plant growth and drought stress resistance, and indicate that CcNAC1 acts as a positive regulator in drought tolerance in jute (Corchorus capsularis L.).
Asunto(s)
Corchorus/química , Flores/química , Regulación de la Expresión Génica de las Plantas/genética , Proteínas de Plantas/metabolismoRESUMEN
Regulation of seed size is a key strategy for improving crop yield and is also a basic biological question. However, the molecular mechanisms by which plants determine their seed size remain elusive. Here, we report that the GW2-WG1-OsbZIP47 regulatory module controls grain width and weight in rice. WG1, which encodes a glutaredoxin protein, promotes grain growth by increasing cell proliferation. Interestingly, WG1 interacts with the transcription factor OsbZIP47 and represses its transcriptional activity by associating with the transcriptional co-repressor ASP1, indicating that WG1 may act as an adaptor protein to recruit the transcriptional co-repressor. In contrary, OsbZIP47 restricts grain growth by decreasing cell proliferation. Further studies reveal that the E3 ubiquitin ligase GW2 ubiquitinates WG1 and targets it for degradation. Genetic analyses confirm that GW2, WG1, and OsbZIP47 function in a common pathway to control grain growth. Taken together, our findings reveal a genetic and molecular framework for the control of grain size and weight by the GW2-WG1-OsbZIP47 regulatory module, providing new targets for improving seed size and weight in crops.
Asunto(s)
Oryza/genética , Proteínas de Plantas/genética , Semillas/genética , Ubiquitina-Proteína Ligasas/genética , Oryza/crecimiento & desarrollo , Semillas/anatomía & histología , Ubiquitinación/genéticaRESUMEN
In Arabidopsis thaliana, six vacuolar Na(+)/H(+) antiporters (AtNHX1-6) were identified. Among them, AtNHX1, 2 and 5 are functional Na(+)/H(+) antiporters with the most abundant expression levels in seedling shoots and roots. However, the expression of AtNHX3 in Arabidopsis can only be detected by RT-PCR, and its physiological function still remains unclear. In this work, we demonstrate that constitutive expression of AtNHX3 in sugar beet (Beta vulgaris L.) conferred augmented resistance to high salinity on transgenic plants. In the presence of 300 or 500 mm NaCl, transgenic plants showed very high potassium accumulation in the roots and storage roots. Furthermore, the transcripts of sucrose phosphate synthase (SPS), sucrose synthase (SS) and cell wall sucrose invertase (SI) genes were maintained in transgenic plants. The accumulation of soluble sugar in the storage roots of transgenic plants grown under high salt stress condition was also higher. Our results implicate that AtNHX3 is also a functional antiporter responsible for salt tolerance by mediating K(+)/H(+) exchange in higher plants. The salt accumulation in leaves but not in the storage roots, and the increased yield of storage roots with enhanced constituent soluble sugar contents under salt stress condition demonstrate a great potential use of this gene in improving the quality and yield of crop plants.