Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 623(7987): 531-537, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37853122

RESUMEN

Achieving both high efficiency and long-term stability is the key to the commercialization of perovskite solar cells (PSCs)1,2. However, the diversity of perovskite (ABX3) compositions and phases makes it challenging to fabricate high-quality films3-5. Perovskite formation relies on the reaction between AX and BX2, whereas most conventional methods for film-growth regulation are based solely on the interaction with the BX2 component. Herein, we demonstrate an alternative approach to modulate reaction kinetics by anion-π interaction between AX and hexafluorobenzene (HFB). Notably, these two approaches are independent but work together to establish 'dual-site regulation', which achieves a delicate control over the reaction between AX and BX2 without unwanted intermediates. The resultant formamidinium lead halides (FAPbI3) films exhibit fewer defects, redshifted absorption and high phase purity without detectable nanoscale δ phase. Consequently, we achieved PSCs with power conversion efficiency (PCE) up to 26.07% for a 0.08-cm2 device (25.8% certified) and 24.63% for a 1-cm2 device. The device also kept 94% of its initial PCE after maximum power point (MPP) tracking for 1,258 h under full-spectrum AM 1.5 G sunlight at 50 ± 5 °C. This method expands the range of chemical interactions that occur in perovskite precursors by exploring anion-π interactions and highlights the importance of the AX component as a new and effective working site to improved photovoltaic devices with high quality and phase purity.

2.
Molecules ; 24(21)2019 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-31671660

RESUMEN

Many dyes and pigments are used in textile and printing industries, and their wastewater has been classed as a top source of pollution. Biodegradation of dyes by fungal laccase has great potential. In this work, the influence of reaction time, pH, temperature, dye concentration, metal ions, and mediators on laccase-catalyzed Remazol Brilliant Blue R dye (RBBR) decolorization were investigated in vitro using crude laccase from the white-rot fungus Ganoderma lucidum. The optimal decolorization percentage (50.3%) was achieved at 35 °C, pH 4.0, and 200 ppm RBBR in 30 min. The mediator effects from syringaldehyde, 1-hydroxybenzotriazole, and vanillin were compared, and 0.1 mM vanillin was found to obviously increase the decolorization percentage of RBBR to 98.7%. Laccase-mediated decolorization percentages significantly increased in the presence of 5 mM Na+ and Cu2+, and decolorization percentages reached 62.4% and 62.2%, respectively. Real-time fluorescence-quantitative PCR (RT-PCR) and protein mass spectrometry results showed that among the 15 laccase isoenzyme genes, Glac1 was the main laccase-contributing gene, contributing the most to the laccase enzyme activity and decolorization process. These results also indicate that under optimal conditions, G. lucidum laccases, especially Glac1, have a strong potential to remove RBBR from reactive dye effluent.


Asunto(s)
Antraquinonas/metabolismo , Colorantes/metabolismo , Lacasa/genética , Reishi/enzimología , Biodegradación Ambiental , Color , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Genes Fúngicos , Concentración de Iones de Hidrógeno , Isoenzimas/metabolismo , Lacasa/química , Lacasa/metabolismo , Metales/farmacología , Reishi/genética , Temperatura , Factores de Tiempo , Transcripción Genética
3.
Adv Mater ; 36(18): e2309844, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38227203

RESUMEN

Metal halide perovskite solar cells (PSCs) have garnered much attention in recent years. Despite the remarkable advancements in PSCs utilizing traditional metal electrodes, challenges such as stability concerns and elevated costs have necessitated the exploration of innovative electrode designs to facilitate industrial commercialization. Herein, a physically and chemically stable molybdenum (Mo) electrode is developed to fundamentally tackle the instability factors introduced by electrodes. The combined spatially resolved element analyses and theoretical study demonstrate the high diffusion barrier of Mo ions within the device. Structural and morphology characterization also reveals the negligible plastic deformation and halide-metal reaction during aging when Mo is in contact with perovskite (PVSK). The electrode/underlayer junction is further stabilized by a thin seed layer of titanium (Ti) to improve Mo film's uniformity and adhesion. Based on a corresponding p-i-n PSCs (ITO/PTAA/PVSK/C60/SnO2/ITO/Ti/Mo), the champion sample could deliver an efficiency of 22.25%, which is among the highest value for PSCs based on Mo electrodes. Meanwhile, the device shows negligible performance decay after 2000 h operation, and retains 91% of the initial value after 1300 h at 50-60 °C. In summary, the multilayer Mo electrode opens an effective avenue to all-round stable electrode design in high-performance PSCs.

4.
Nat Commun ; 15(1): 7024, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39147746

RESUMEN

To achieve high power conversion efficiency in perovskite/silicon tandem solar cells, it is necessary to develop a promising wide-bandgap perovskite absorber and processing techniques in relevance. To date, the performance of devices based on wide-bandgap perovskite is still limited mainly by carrier recombination at their electron extraction interface. Here, we demonstrate assembling a binary two-dimensional perovskite by both alternating-cation-interlayer phase and Ruddlesden-Popper phase to passivate perovskite/C60 interface. The binary two-dimensional strategy takes effects not only at the interface but also in the bulk, which enables efficient charge transport in a wide-bandgap perovskite solar cell with a stabilized efficiency of 20.79% (1 cm2). Based on this absorber, a monolithic perovskite/silicon tandem solar cell is fabricated with a steady-state efficiency of 30.65% assessed by a third party. Moreover, the tandem devices retain 96% of their initial efficiency after 527 h of operation under full spectral continuous illumination, and 98% after 1000 h of damp-heat testing (85 °C with 85% relative humidity).

5.
AMB Express ; 10(1): 47, 2020 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-32170413

RESUMEN

Lentinan is a Lentinus edodes secondary metabolite that can regulate human immune function, but yields are low. Here, the effects of Ca2+ and Na+ on L. edodes lentinan content were investigated. Metal ion concentrations and induction times were optimized according to mycelial biomass, and intracellular polysaccharide (IPS), extracellular polysaccharide (EPS), and total polysaccharide (TPS) content. The activities and gene expression of phospho-glucose isomerase (PGI), phosphoglucomutase (PGM), and UDP-glcpyrophosphorylase (UGP) were also measured. Ca2+ and Na+ concentration and induction time affected biomass, IPS, and EPS concentrations. Na+ increased EPS, IPS and TPS, while Ca2+ increased biomass, IPS, and TPS. During fermentation, mycelial biomass varied greatly under Ca2+ induction, while IPS, EPS and TPS varied greatly under Na+ induction. PGM and UGP activities increased in the presence of Na+, while PGI increased with Ca2+. Compared to control samples, pgi and pgm expression under Na+ was greater at days 45 and 60, respectively, while under Ca2+, ugp expression was greater at day 45. IPS content correlated significantly with enzyme activity, while EPS correlated with PGM activity. Our data contributes to better understanding how Na+ and Ca2+ affect mycelial growth and secondary metabolite production, and of polysaccharide biosynthesis mechanisms of L. edodes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA