Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39316532

RESUMEN

Context: Amputation results in large wounds and in mobility disorders for patients, easily leading to social difficulties and affecting patients' psychological recovery. In recent years, some clinicians have used narrative nursing to intervene in the effects of stigma for patients with diseases other than amputations and have achieved good effects. Objective: The study intended to examine the impact of narrative nursing on amputation patients' feelings of stigma and on their resulting psychological crises. Design: The research team conducted a randomized controlled trial. Setting: The study occurred at the Affiliated Huaian No.1 People's Hospital of Nanjing Medical University in Huai'an, China. Participants: Participants were 75 patients who underwent lower-limb amputations at the hospital between November 2021 and May 2023. Interventions: The research team randomly divided participants into two groups: (1) the control group with 38 participants, who received conventional nursing, and (2) the intervention group, with 37 participants, who received a narrative nursing intervention in addition to conventional nursing. Outcome Measures: The research team measured: (1) stigma, using the Stigma Impact Scale (SIS); (2) anxiety and depression, using the Hospital Anxiety and Depression Scale (HADS); and (3) nursing satisfaction. The team also examined the correlation between participants' stigma scores and anxiety and depression scores. Results: Postintervention compared to the control group, the intervention group's: (1) SIS scores were significantly lower (P < .001); (2) anxiety and depression scores were significantly lower (both P < .001); (3) total nursing satisfaction rate was significantly higher (P = .011). The correlation analysis demonstrated a significant positive association between the SIS and the HADS scores (P < .05). Conclusions: Narrative nursing can improve the psychological states of amputees, mitigate their feelings of stigma, and elevate their nursing satisfaction, and it's worthy of clinical use.

2.
Ecotoxicol Environ Saf ; 270: 115924, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38171103

RESUMEN

As a typical organophosphorus flame retardant, tris(2-chloroethyl) phosphate (TCEP) is refractory in aqueous environment. The application of TAP is a promising method for removing pollutants. Herein, the removal of TCEP using TAP was rigorously investigated, and the effects of some key variables were optimized by the one-factor-at-a-time approach. To further evaluate the interactions among variables, the response surface methodology (RSM) based on central composite design was employed. Under optimized conditions (pH 5, [PS]0: [TCEP]0 = 500:1), the maximum removal efficiency (RE) of TCEP reached up to 90.6%. In real-world waters, the RE of TCEP spanned the range of 56%- 65% in river water, pond water, lake water and sanitary sewage. The low-concentration Cl- (0.1 mM) promoted TCEP degradation, but the contrary case occurred when the high-concentration Cl-, NO3-, CO32-, HCO3-, HPO42-, H2PO4-, NH4+ and humic acid were present owing to their prominently quenching effects on SO4•-. Both EPR and scavenger experiments revealed that the main radicals in the TAP system were SO4•- and •OH, in which SO4•- played the most crucial role in TCEP degradation. GC-MS/MS analysis disclosed that two degradation products appeared, sourcing from the replacement, oxidation, hydroxylation and water-molecule elimination reactions. The other two products were inferred from the comprehensive literature. As for acute toxicity to fish, daphnid and green algae, product A displayed the slightly higher toxicity, whereas other three products exhibited the declining toxicity as compared to their parent molecule. These findings offer a theoretical/practical reference for high-efficiency removal of TCEP and its ecotoxicological risk evaluation.


Asunto(s)
Retardadores de Llama , Fosfinas , Contaminantes Químicos del Agua , Retardadores de Llama/toxicidad , Espectrometría de Masas en Tándem , Compuestos Organofosforados , Organofosfatos/toxicidad , Organofosfatos/química , Oxidación-Reducción , Agua , Fosfatos , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/química
3.
Can J Infect Dis Med Microbiol ; 2024: 1802115, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39346024

RESUMEN

Klebsiella pneumoniae is a pathogen that commonly causes hospital-acquired infections. Bacterial biofilms are structured bacterial communities that adhere to the surface of objects or biological tissues. In this study, we investigated the genome homology and biofilm formation capacity of ESBL-producing K. pneumoniae. Thirty ESBL-producing K. pneumoniae isolates from 25 inpatients at Ruijin Hospital, Shanghai, were subjected to pulsed-field gel electrophoresis (PFGE) to estimate genomic relatedness. Based on the chromosomal DNA patterns we obtained, we identified 21 PFGE profiles from the 30 isolates, eight of which had high homology indicating that they may have genetic relationships and/or potential clonal advantages within the hospital. Approximately 84% (21/25) of the clinical patients had a history of surgery, urinary tract catheterization, and/or arteriovenous intubation, all of which may have increased the risk for nosocomial infections. Biofilms were observed in 73% (22/30) of the isolates and that strains did not express type 3 fimbriae did not have biofilm formation capacity. Above findings indicated that a high percentage of ESBL-producing K. pneumoniae isolates formed biofilms in vitro and even though two strains with cut-off of PFGE reached 100% similarity, they generated biofilms differently. Besides, the variability in biofilm formation ability may be correlated with the expression of type 3 fimbriae. Thus, we next screened four ESBL-producing K. pneumoniae isolates (Kpn5, Kpn7, Kpn11, and Kpn16) with high homology and significant differences in biofilm formation using PFGE molecular typing, colony morphology, and crystal violet tests. Kpn7 and Kpn16 had stronger biofilm formation abilities compared with Kpn5 and Kpn11. The ability of above four ESBL-producing K. pneumoniae isolates to agglutinate in a mannose-resistant manner or in a mannose-sensitive manner, as well as RNA sequencing-based transcriptome results, showed that type 3 fimbriae play a significant role in biofilm formation. In contrast, type 1 fimbriae were downregulated during biofilm formation. Further research is needed to fully understand the regulatory mechanisms which underlie these processes.

4.
BMC Genomics ; 24(1): 149, 2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-36973659

RESUMEN

BACKGROUND: Interspecific hybridization plays vital roles in enriching animal diversity, while male hybrid sterility (MHS) of the offspring commonly suffered from spermatogenic arrest constitutes the postzygotic reproductive isolation. Cattle-yak, the hybrid offspring of cattle (Bos taurus) and yak (Bos grunniens) can serve as an ideal MHS animal model. Although meiotic arrest was found to contribute to MHS of cattle-yak, yet the cellular characteristics and developmental potentials of male germline cell in pubertal cattle-yak remain to be systematically investigated. RESULTS: Single-cell RNA-seq analysis of germline and niche cell types in pubertal testis of cattle-yak and yak indicated that dynamic gene expression of developmental germ cells was terminated at late primary spermatocyte (meiotic arrest) and abnormal components of niche cell in pubertal cattle-yak. Further in vitro proliferation and differentially expressed gene (DEG) analysis of specific type of cells revealed that undifferentiated spermatogonia of cattle-yak exhibited defects in viability and proliferation/differentiation potentials. CONCLUSION: Comparative scRNA-seq and in vitro proliferation analysis of testicular cells indicated that not only meiotic arrest contributed to MHS of cattle-yak. Spermatogenic arrest of cattle-yak may originate from the differentiation stage of undifferentiated spermatogonia and niche cells of cattle-yak may provide an adverse microenvironment for spermatogenesis.


Asunto(s)
Infertilidad Masculina , Testículo , Animales , Masculino , Humanos , Bovinos , Testículo/metabolismo , Análisis de Expresión Génica de una Sola Célula , Infertilidad Masculina/genética , Infertilidad Masculina/veterinaria , Espermatogénesis/genética , Espermatogonias
5.
Toxicol Appl Pharmacol ; 470: 116547, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37178933

RESUMEN

Daunorubicin (DNR-) induced cardiotoxicity seriously restricts its clinical application. Transient receptor potential cation channel subfamily C member 6 (TRPC6) is involved in multiple cardiovascular physiological and pathophysiological processes. However, the role of TRPC6 anthracycline-induced cardiotoxicity (AIC) remains unclear. Mitochondrial fragmentation greatly promotes AIC. TRPC6-mediated ERK1/2 activation has been shown to favor mitochondrial fission in dentate granule cells. The aim of the present study was to elucidate the effects of TRPC6 on daunorubicin- induced cardiotoxicity and identify the mechanisms associated with mitochondrial dynamics. The sparkling results showed that TRPC6 was upregulated in models in vitro and in vivo. TRPC6 knockdown protected cardiomyocytes from DNR-induced cell apoptosis and death. DNR largely facilitated mitochondrial fission, boosted mitochondrial membrane potential collapse and damaged debilitated mitochondrial respiratory function in H9c2 cells,these effects were accompanied by TRPC6 upregulation. siTRPC6 effectively inhibited these mitochondrial adverse aspects showing a positive unexposed effect on mitochondrial morphology and function. Concomitantly, ERK1/2-DRP1 which is related to mitochondrial fission was significantly activated with amplified phosphorylated forms in DNR-treated H9c2 cells. siTRPC6 effectively suppressed ERK1/2-DPR1 over activation, hinting at a potential correlation between TRPC6 and ERK1/2-DRP1 by which mitochondrial dynamics are possibly modulated in AIC. TRPC6 knockdown also raised the Bcl-2/Bax ratio, which may help to block mitochondrial fragmentation-related functional impairment and apoptotic signaling. These findings suggested an essential role of TRPC6 in AIC by intensifying mitochondrial fission and cell death via ERK1/2-DPR1, which could be a potential therapeutic target for AIC.


Asunto(s)
Daunorrubicina , Miocitos Cardíacos , Canal Catiónico TRPC6 , Animales , Ratas , Apoptosis , Cardiotoxicidad/metabolismo , Muerte Celular , Daunorrubicina/toxicidad , Dinaminas/metabolismo , Sistema de Señalización de MAP Quinasas , Dinámicas Mitocondriales , Miocitos Cardíacos/metabolismo , Canales Catiónicos TRPC/genética , Canales Catiónicos TRPC/metabolismo , Canal Catiónico TRPC6/metabolismo
6.
Genet Res (Camb) ; 2022: 2823356, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36118275

RESUMEN

Matrix metalloproteinase (MMP)-2 and MMP-9 are a family of Zn2+ and Ca2+-dependent gelatinase MMPs that regulate muscle development and disease treatment, and they are highly conservative during biological evolution. Despite increasing knowledge of MMP genes, their evolutionary mechanism for functional adaption remains unclear. Moreover, analysis of codon usage bias (CUB) is reliable to understand evolutionary associations. However, the distribution of CUB of MMP-2 and MMP-9 genes in mammals has not been revealed clearly. Multiple analytical software was used to study the genetic evolution, phylogeny, and codon usage pattern of these two genes in seven species of mammals. Results showed that the MMP-2 and MMP-9 genes have CUB. By comparing the content of synonymous codon bases amongst seven mammals, we found that MMP-2 and MMP-9 were low-expression genes in mammals with high codon conservation, and their third codon preferred the G/C base. RSCU analysis revealed that these two genes preferred codons encoding delicious amino acids. Analysing what factors influence CUB showed that the third base distributors of these two genes were C/A and C/T, and GC3S had a wide distribution range on the ENC plot reference curve under no selection or mutational pressure. Thus, mutational pressure is an important factor in CUB. This study revealed the usage characteristics of the MMP-2 and MMP-9 gene codons in different mammals and provided basic data for further study towards enhancing meat flavour, treating muscle disease, and optimizing codons.


Asunto(s)
Uso de Codones , Metaloproteinasa 2 de la Matriz , Aminoácidos/genética , Animales , Análisis por Conglomerados , Codón/genética , Mamíferos/genética , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/genética
7.
Reprod Domest Anim ; 57(1): 64-71, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34695258

RESUMEN

The yak is an important source for the people living and ecological environment in the Qinghai-Tibet Plateau. In every winter, many domestic yaks will lose bodyweight or dead under cold and food scarcity. Moving the plateau yaks to farm in the plain is a useful approach to reduce their environmental stress and gain more production. In this study, we measured growth, slaughter and beef quality traits every month and sequenced mRNA expression levels of muscles of two groups yaks living in plateau and plain respectively. We found there is significant difference (p-value <0.01) in the third (60 days), fourth (90 days), fifth (120 days) and sixth (150 days) weights between subpopulations in the plateau and plain. We identified 540 different expressed genes (DEGs) including 123 known genes and 417 unknown genes. Using the weighted correlation network analysis (WGCNA) to build a co-express network, the modules were strong relative to weight traits. The findings highlighted the underlying way and a relative network to yield a new view about gene expression between the yaks living plateau and plain.


Asunto(s)
Perfilación de la Expresión Génica , Transcriptoma , Animales , Secuencia de Bases , Bovinos/genética , Perfilación de la Expresión Génica/veterinaria , Estaciones del Año , Tibet
8.
Circ Res ; 125(11): 989-1002, 2019 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-31545149

RESUMEN

RATIONALE: Obesity leads to resistant hypertension and mechanisms are poorly understood, but high plasma levels of leptin have been implicated. Leptin increases blood pressure acting both centrally in the dorsomedial hypothalamus and peripherally. Sites of the peripheral hypertensive effect of leptin have not been identified. We previously reported that leptin enhanced activity of the carotid sinus nerve, which transmits chemosensory input from the carotid bodies (CBs) to the medullary centers, and this effect was abolished by nonselective blockers of Trp (transient receptor potential) channels. We searched our mouse CB transcriptome database and found that the Trpm7 (transient receptor potential melastatin 7) channel was the most abundant Trp channel. OBJECTIVE: To examine if leptin induces hypertension acting on the CB Trpm7. METHODS AND RESULTS: C57BL/6J (n=79), leptin receptor (LepRb) deficient db/db mice (n=22), and LepRb-EGFP (n=4) mice were used. CB Trpm7 and LepRb gene expression was determined and immunohistochemistry was performed; CB glomus cells were isolated and Trpm7-like current was recorded. Blood pressure was recorded continuously in (1) leptin-treated C57BL/6J mice with intact and denervated CB; (2) leptin-treated C57BL/6J mice, which also received a nonselective Trpm7 blocker FTY720 administered systemically or topically to the CB area; (3) leptin-treated C57BL/6J mice transfected with Trpm7 small hairpin RNA to the CB, and (4) Leprb deficient obese db/db mice before and after Leprb expression in CB. Leptin receptor and Trpm7 colocalized in the CB glomus cells. Leptin induced a nonselective cation current in these cells, which was inhibited by Trpm7 blockers. Leptin induced hypertension in C57BL/6J mice, which was abolished by CB denervation, Trpm 7 blockers, and Trpm7 small hairpin RNA applied to CBs. Leprb overexpression in CB of Leprb-deficient db/db mice demethylated the Trpm7 promoter, increased Trpm7 gene expression, and induced hypertension. CONCLUSIONS: We conclude that leptin induces hypertension acting on Trmp7 in CB, which opens horizons for new therapy.


Asunto(s)
Presión Sanguínea , Cuerpo Carotídeo/metabolismo , Hipertensión/inducido químicamente , Leptina , Receptores de Leptina/metabolismo , Canales Catiónicos TRPM/metabolismo , Animales , Antihipertensivos/farmacología , Presión Sanguínea/efectos de los fármacos , Cuerpo Carotídeo/efectos de los fármacos , Cuerpo Carotídeo/fisiopatología , Desnervación , Modelos Animales de Enfermedad , Hipertensión/metabolismo , Hipertensión/fisiopatología , Hipertensión/prevención & control , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/complicaciones , Receptores de Leptina/deficiencia , Receptores de Leptina/genética , Transducción de Señal , Canales Catiónicos TRPM/antagonistas & inhibidores , Canales Catiónicos TRPM/genética
9.
Acta Pharmacol Sin ; 42(4): 508-517, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32724175

RESUMEN

Hypertension is the most prevalent health condition worldwide, affecting ~1 billion people. Gordon's syndrome is a form of secondary hypertension that can arise due to a number of possible mutations in key genes that encode proteins in a pathway containing the With No Lysine [K] (WNK) and its downstream target kinases, SPS/Ste20-related proline-alanine-rich kinase (SPAK) and oxidative stress responsive kinase 1 (OSR1). This pathway regulates the activity of the thiazide-sensitive sodium chloride cotransporter (NCC), which is responsible for NaCl reabsorption in the distal nephron. Therefore, mutations in genes encoding proteins that regulate the NCC proteins disrupt ion homeostasis and cause hypertension by increasing NaCl reabsorption. Thiazide diuretics are currently the main treatment option for Gordon's syndrome. However, they have a number of side effects, and chronic usage can lead to compensatory adaptations in the nephron that counteract their action. Therefore, recent research has focused on developing novel inhibitory molecules that inhibit components of the WNK-SPAK/OSR1-NCC pathway, thereby reducing NaCl reabsorption and restoring normal blood pressure. In this review we provide an overview of the currently reported molecular inhibitors of the WNK-SPAK/OSR1-NCC pathway and discuss their potential as treatment options for Gordon's syndrome.


Asunto(s)
Inhibidores de Proteínas Quinasas/uso terapéutico , Seudohipoaldosteronismo/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Animales , Presión Sanguínea/efectos de los fármacos , Proteínas de Unión al Calcio/antagonistas & inhibidores , Proteínas Cullin/antagonistas & inhibidores , Diuréticos/uso terapéutico , Humanos , Proteínas de Microfilamentos/antagonistas & inhibidores , Unión Proteica/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , Seudohipoaldosteronismo/metabolismo , Transducción de Señal/fisiología , Miembro 3 de la Familia de Transportadores de Soluto 12/metabolismo , Proteína Quinasa Deficiente en Lisina WNK 1/antagonistas & inhibidores , Proteína Quinasa Deficiente en Lisina WNK 1/metabolismo
10.
Med Sci Monit ; 27: e929884, 2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-33967266

RESUMEN

BACKGROUND Hepatocellular carcinoma (HCC) is one of the most common tumors. Transarterial chemoembolization (TACE) is the first choice of treatment for intermediate HCC and an important treatment option for advanced HCC. This retrospective study compared the prognosis between patients showing coagulative necrosis and patients showing liquefactive necrosis after the first TACE procedure. MATERIAL AND METHODS We divided 171 patients with Barcelona Clinic Liver Cancer (BCLC) Stage B or C HCC into 2 groups; a coagulative necrosis group (79 patients) and a liquefactive necrosis group (92 patients). The coagulative and liquefactive necroses were identified by computed tomography after the first TACE procedure. Kaplan-Meier analysis was used to identify the differences in the overall survival (OS) and progression-free survival (PFS) between the 2 groups, and the associated risk factors and safety of TACE were analyzed. RESULTS The median OS durations were 23.27±1.40 months and 8.83±2.15 months (P=0.004) and the median PFS durations were 9.33±0.96 months and 3.70±0.44 months (P=0.002) in the coagulative necrosis and liquefactive necrosis groups, respectively. Intrahepatic in situ progression, new intrahepatic metastasis, and extrahepatic progression occurred significantly earlier in the liquefactive necrosis group (P<0.05). Univariate analysis and multivariate analyses showed liquefactive necrosis was the main risk factor for OS. There was no significant difference in the hepatic function impairment or post-embolism syndrome after TACE. CONCLUSIONS After the first TACE procedure, the patients with liquefactive necrosis experienced recurrence and metastasis earlier and had a worse prognosis. Therefore, these patients should be considered for earlier administration of targeted therapies or immunotherapies after TACE.


Asunto(s)
Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/terapia , Necrosis/patología , Necrosis/terapia , Quimioembolización Terapéutica/métodos , Femenino , Humanos , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Recurrencia Local de Neoplasia/patología , Estadificación de Neoplasias/métodos , Pronóstico , Supervivencia sin Progresión , Estudios Retrospectivos
11.
Sheng Li Xue Bao ; 73(6): 867-877, 2021 Dec 25.
Artículo en Zh | MEDLINE | ID: mdl-34961860

RESUMEN

The purpose of the present study was to investigate the effect of transient receptor potential vanilloid 4 (TRPV4) channel on the permeability of pulmonary microvascular endothelial cells (PMVECs) in rats with chronic hypoxia-induced pulmonary hypertension (CHPH), so as to clarify the mechanism of vascular endothelial dysfunction during the occurrence of pulmonary hypertension (PH). CHPH rat model was established by exposure to chronic hypoxia (CH) for 21 days. Primary PMVECs were cultured by adherent tissue blocks at the edge of the lung. The permeability coefficient of primary cultured PMVECs was detected by fluorescein isothiocyanate (FITC)-dextran. The structure of tight junction (TJ) was observed by transmission electron microscope. The expression of TRPV4 and TJ-related proteins, such as, Occludin, Claudin-5, ZO-1 were examined by real-time fluorescence quantitative PCR and Western blotting. The intracellular calcium concentration ([Ca2+]i) in PMVECs and its effect on PMVECs permeability were observed after the intervention of TRPV4 specific agonist GSK1016790A (GSK, 10 nmol/L) and specific inhibitor HC-067047 (HC, 1 µmol/L, 0.5 µmol/L). The results showed that the CHPH model was successfully established in rats treated with CH for 21 days. In CHPH rats, the structure of TJ was destroyed, the function of PMVECs barrier was decreased, the intercellular permeability was increased, the expression of TJ-related proteins were significantly decreased and the expression of TRPV4 was significantly increased (P < 0.01). The amplitude of [Ca2+]i in PMVECs of CHPH rats was significantly increased after activation of TRPV4. The inhibition ratio of HC on [Ca2+]i in PMVECs of CHPH rats was significantly higher than that in normal PMVECs. TRPV4 specific inhibitor HC reversed the increase of PMVECs permeability and increased the expression of three TJ-related proteins in CHPH rats (P < 0.01, P < 0.05). These results suggest that TRPV4 channel can induce endothelial dysfunction by increasing the [Ca2+]i, resulting in the destruction of TJ structure and the decrease of TJ-related proteins expression on PMVECs in CHPH rats.


Asunto(s)
Hipertensión Pulmonar , Canales Catiónicos TRPV , Animales , Células Endoteliales , Hipoxia/complicaciones , Pulmón , Permeabilidad , Ratas , Canales Catiónicos TRPV/genética
12.
Pharm Biol ; 58(1): 1055-1063, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33096951

RESUMEN

CONTEXT: Ginsenoside Rb1, the main active ingredient of ginseng, exhibits ex vivo depression of store-operated calcium entry (SOCE) and related vasoconstriction in pulmonary arteries derived from pulmonary hypertension (PH) rats. However, the in vivo effects of ginsenoside Rb1 on PH remain unclear. OBJECTIVE: This study explored the possibility of using ginsenoside Rb1 as an in vivo preventive medication for type I PH, i.e., pulmonary arterial hypertension (PAH), and potential mechanisms involving SOCE. MATERIALS AND METHODS: Male Sprague-Dawley rats (170-180 g) were randomly divided into Control, MCT, and MCT + Rb1 groups (n = 20). Control rats received only saline injection. Rats in the MCT + Rb1 and MCT groups were intraperitoneally administered single doses of 50 mg/kg monocrotaline (MCT) combined with 30 mg/kg/day ginsenoside Rb1 or equivalent volumes of saline for 21 consecutive days. Subsequently, comprehensive parameters related to SOCE, vascular tone, histological changes and hemodynamics were measured. RESULTS: Ginsenoside Rb1 reduced MCT-induced STIM1, TRPC1, and TRPC4 expression by 35.00, 31.96, and 32.24%, respectively, at the protein level. SOCE-related calcium entry and pulmonary artery contraction decreased by 162.6 nM and 71.72%. The mean pulmonary artery pressure, right ventricle systolic pressure, and right ventricular mass index decreased by 19.5 mmHg, 21.6 mmHg, and 39.50%. The wall thickness/radius ratios decreased by 14.67 and 17.65%, and the lumen area/total area ratios increased by 18.55 and 15.60% in intrapulmonary vessels with 51-100 and 101-150 µm o.d. CONCLUSION: Ginsenoside Rb1, a promising candidate for PH prevention, inhibited SOCE and related pulmonary vasoconstriction, and relieved MCT-induced PAH in rats.


Asunto(s)
Calcio/metabolismo , Ginsenósidos/farmacología , Hipertensión Arterial Pulmonar/prevención & control , Animales , Modelos Animales de Enfermedad , Masculino , Monocrotalina , Panax/química , Arteria Pulmonar/efectos de los fármacos , Arteria Pulmonar/metabolismo , Ratas , Ratas Sprague-Dawley , Vasoconstricción/efectos de los fármacos
13.
J Physiol ; 597(1): 151-172, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30285278

RESUMEN

KEY POINTS: Leptin is a potent respiratory stimulant. A long functional isoform of leptin receptor, LepRb , was detected in the carotid body (CB), a key peripheral hypoxia sensor. However, the effect of leptin on minute ventilation (VE ) and the hypoxic ventilatory response (HVR) has not been sufficiently studied. We report that LepRb is present in approximately 74% of the CB glomus cells. Leptin increased carotid sinus nerve activity at baseline and in response to hypoxia in vivo. Subcutaneous infusion of leptin increased VE and HVR in C57BL/6J mice and this effect was abolished by CB denervation. Expression of LepRb in the carotid bodies of LepRb deficient obese db/db mice increased VE during wakefulness and sleep and augmented the HVR. We conclude that leptin acts on LepRb in the CBs to stimulate breathing and HVR, which may protect against sleep disordered breathing in obesity. ABSTRACT: Leptin is a potent respiratory stimulant. The carotid bodies (CB) express the long functional isoform of leptin receptor, LepRb , but the role of leptin in CB has not been fully elucidated. The objectives of the current study were (1) to examine the effect of subcutaneous leptin infusion on minute ventilation (VE ) and the hypoxic ventilatory response to 10% O2 (HVR) in C57BL/6J mice before and after CB denervation; (2) to express LepRb in CB of LepRb -deficient obese db/db mice and examine its effects on breathing during sleep and wakefulness and on HVR. We found that leptin enhanced carotid sinus nerve activity at baseline and in response to 10% O2 in vivo. In C57BL/6J mice, leptin increased VE from 1.1 to 1.5 mL/min/g during normoxia (P < 0.01) and from 3.6 to 4.7 mL/min/g during hypoxia (P < 0.001), augmenting HVR from 0.23 to 0.31 mL/min/g/Δ FIO2 (P < 0.001). The effects of leptin on VE and HVR were abolished by CB denervation. In db/db mice, LepRb expression in CB increased VE from 1.1 to 1.3 mL/min/g during normoxia (P < 0.05) and from 2.8 to 3.2 mL/min/g during hypoxia (P < 0.02), increasing HVR. Compared to control db/db mice, LepRb transfected mice showed significantly higher VE throughout non-rapid eye movement (20.1 vs. -27.7 mL/min respectively, P < 0.05) and rapid eye movement sleep (16.5 vs 23.4 mL/min, P < 0.05). We conclude that leptin acts in CB to augment VE and HVR, which may protect against sleep disordered breathing in obesity.


Asunto(s)
Cuerpo Carotídeo/fisiología , Hipoxia/fisiopatología , Leptina/fisiología , Ventilación Pulmonar/fisiología , Sueño/fisiología , Vigilia/fisiología , Animales , Leptina/sangre , Masculino , Ratones Endogámicos C57BL , Ratones Obesos , Receptores de Leptina/fisiología
14.
J Biol Chem ; 293(38): 14669-14677, 2018 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-30082314

RESUMEN

Hypoxia-inducible factor 1α (HIF-1α) is a transcription factor that regulates cellular responses to hypoxia. It controls the expression of both BCL2/adenovirus E1B 19-kDa protein-interacting protein 3 (BNIP3) and insulin-like growth factor 2 (IGF2). Previous studies have demonstrated that in hypoxia, copper is required for the expression of BNIP3 but not for that of IGF2 Here, using ChIP assays, computational analyses, luciferase reporter assays, and real-time quantitative RT-PCR, we sought to better understand how copper regulates the differential target gene selectivity of HIF-1α. Human umbilical vein endothelial cells (HUVECs) were exposed to CoCl2 or hypoxia conditions to increase HIF-1α accumulation. The binding of HIF-1α to hypoxia-responsive element (HRE) sites in the BNIP3 or IGF2 gene promoter in high- or low-copper conditions was examined. Our analyses revealed three and two potential HRE sites in the BNIP3 and IGF2 promoters, respectively. We identified that HRE (-412/-404) in the BNIP3 promoter and HRE (-354/-347) in the IGF2 promoter are the critical binding sites of HIF-1α. Tetraethelenepentamine (TEPA)-mediated reduction in copper concentration did not affect hypoxia- or CoCl2-induced HIF-1α accumulation. However, the copper reduction did suppress the binding of HIF-1α to the HRE (-412/-404) in BNIP3 but not the binding of HIF-1α to the HRE (-354/-347) in IGF2 In summary, our findings uncovered the mechanistic basis for differential HIF-1α-mediated regulation of BNIP3 and IGF2, indicating that copper regulates target gene selectivity of HIF-1α at least in part by affecting HIF-1α binding to its cognate HRE in the promoters of these two genes.


Asunto(s)
Hipoxia de la Célula/genética , Cobre/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Factor II del Crecimiento Similar a la Insulina/genética , Proteínas de la Membrana/genética , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas/genética , Inmunoprecipitación de Cromatina , Cobalto/farmacología , Etilenodiaminas/farmacología , Regulación de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana , Humanos , Oxígeno/metabolismo , Unión Proteica
15.
Exp Physiol ; 104(6): 932-945, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30840346

RESUMEN

NEW FINDINGS: What is the central question of this study? The aim was to examine and compare the contributions of caveolin-1 to the contractile responses mediated by L-type voltage-dependent calcium channels, store-operated Ca2+ channels and receptor-operated Ca2+ channels in two different types of arteries from two-kidney, one-clip hypertensive rats. What is the main finding and its importance? We demonstrated that the density of caveolae and caveolin-1 expression were significantly upregulated in the aorta of two-kidney, one-clip hypertensive rats, but not in the third-order branches of mesenteric arteries. We highlight that caveolin-1 plays an important role in aortic constriction by enhancing receptor-operated Ca2+ entry in the hypertensive rat model. ABSTRACT: Calcium and its multiple regulatory mechanisms are crucial for the development of hypertension. Among these regulatory mechanisms, store-operated Ca2+ entry (SOCE) and receptor-operated Ca2+ entry (ROCE) mediate agonist-induced calcium influx, contributing to vascular contraction. The SOCE and ROCE are regulated by a variety of mechanisms involving caveolin-1 (Cav1), which has been found to be strongly associated with hypertension in gene polymorphism. In the present study, we investigated the role of Cav1 during the enhanced activity of calcium channels in hypertensive arteries. We demonstrated that the expression level of Cav1 was significantly increased in the aorta of two-kidney, one-clip (2K1C) hypertensive rats. The disruption of caveolae by methyl-ß-cyclodextrin did not cause a marked difference in agonist-induced vasoconstriction in the third-order branches of the mesenteric arteries but strongly suppressed the aortic contractile response to endothelin-1 in the 2K1C group, which was not found in the control group. The increase in Cav1 by introduction of Cav1 scaffolding domain enhancing peptide promoted the 1-oleoyl-2-acetyl-glycerol-induced ROCE in hypertensive aortic smooth muscle cells but did not enhance the cyclopiazonic acid-induced SOCE. In the resistance arteries, similar changes were not observed, and no statistical changes of Cav1 expression were evident in the third-order branches of the mesenteric arteries. Our results indicate that increased Cav1 expression might promote the altered [Ca2+ ]i -induced aortic vasoreactivity by enhancing ROCE and be involved in the pathogenesis of hypertension.


Asunto(s)
Aorta/metabolismo , Calcio/metabolismo , Caveolina 1/metabolismo , Hipertensión/metabolismo , Animales , Masculino , Arterias Mesentéricas/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Ratas , Ratas Sprague-Dawley
16.
Pathobiology ; 86(5-6): 274-284, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31574524

RESUMEN

BACKGROUND: Effective antiretroviral therapy extends the survival of patients with human immunodeficiency virus (HIV)/acquired immune deficiency syndrome, but these patients remain at higher risk for heart diseases compared with the general population. Previous studies have suggested that HIV-1 glycoprotein 120 (gp120) may be associated with heart disease. However, the underlying mechanisms by which HIV-1 gp120-mediated myocardial injury occurs remain unknown. OBJECTIVE: The current study aimed to uncover the mechanism of C-C chemokine receptor 5 (CCR5) coreceptor (R5) HIV-1 gp120-induced myocardial injury. METHODS: Morphology analysis, determination of the percentage of cell apoptosis, as well as lactate dehydrogenase (LDH) and creatine kinase (CK) assays were used to analyze whether R5 HIV-1 gp120 induced myocardial cell injury. We analyzed the phosphorylation of p38 mitogen-activated protein kinase (MAPK) with the CCR5 antagonist D-Ala-peptide T-amide (DAPTA) and NMDA receptor antagonist MK801, detected LDH and CK assays with p38 MAPK antagonist SB203580 (SB), and detected the percentage of cell apoptosis and death with DAPTA to investigate the mechanism of R5 HIV-1 gp120-induced myocardial cell injury. RESULTS: R5 HIV-1 gp120 damaged myocardial cells and induced p38 MAPK phosphorylation. SB blocked R5 HIV-1 gp120-induced myocardial cell injury. DAPTA blocked R5 HIV-1 gp120-mediated p38 MAPK phosphorylation, while MK801 did not. DAPTA inhibited R5 HIV-1 gp120-induced myocardial cell injury. CONCLUSION: Our data indicate that R5 HIV-1 gp120 activated p38 MAPK to trigger myocardial cell injury by the CCR5 coreceptor.


Asunto(s)
Proteína gp120 de Envoltorio del VIH/genética , Miocitos Cardíacos/patología , Receptores CCR5/genética , Transducción de Señal , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Células Cultivadas , Femenino , VIH-1 , Masculino , Fosforilación , Ratas , Ratas Sprague-Dawley , Receptores CCR5/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/genética
17.
Cell Physiol Biochem ; 49(1): 172-189, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30134231

RESUMEN

BACKGROUND/AIMS: Pulmonary arterial hypertension (PAH) is a severe and debilitating disease characterized by remodeling of the pulmonary vessels, which is driven by excessive proliferation and migration and apoptosis resistance in pulmonary artery smooth muscle cells (PASMCs). The calcineurin (CaN)/nuclear factor of activated T-cells (NFAT) signaling pathway is the most important downstream signaling pathway of store-operated Ca2+ entry (SOCE), which is increased in PAH. CaN/NFAT has been reported to contribute to abnormal proliferation in chronic hypoxia (CH)-induced PAH. However, the effect of CaN/NFAT signaling on PASMC proliferation, migration and apoptosis in monocrotaline (MCT)-induced PAH remains unclear. METHODS: PAH rats were established by a single intraperitoneal injection of MCT for 21 days. PASMCs were isolated and cultured in normal and MCT-induced PAH Sprague-Dawley rat. PASMCs were treated with CsA targeting CaN and siRNA targeting NFATc2-4 gene respectively by liposome. We investigated the expression of calcineurin/NFAT signaling by immunofluorescence, qRT-PCR and Western blotting methods. Cell proliferation was monitored using MTS reagent or by assessing proliferating cell nuclear antigen (PCNA) expression. Cell apoptosis was evaluated with an Annexin V - FITC/propidium iodide (PI) apoptosis kit by flow cytometry. PASMC migration was assessed with a Transwell chamber. RESULTS: MCT successfully induced PAH and pulmonary vascular remodeling in rats. CaN phosphatase activity and nuclear translocation of NFATc2-4 were increased in PASMCs derived from MCT-treated rats. In addition, CaNBß/NFATc2-4 expression was amplified at the mRNA and protein levels. PASMC proliferation and migration were markedly inhibited in a dosedependent manner by cyclosporin A (CsA). Furthermore, siRNA targeting NFATc2 and NFATc4 attenuated the excessive proliferation and migration and apoptosis resistance in PASMCs derived from both CON and MCT-treated rats, while NFATc3 knockdown specifically affected MCT-PASMCs. CONCLUSION: Our results demonstrate that CaN/NFAT signaling is activated and involved in the modulation of PASMC proliferation, migration and apoptosis in MCT-induced PAH.


Asunto(s)
Apoptosis , Calcineurina/metabolismo , Proliferación Celular , Hipertensión Pulmonar/patología , Factores de Transcripción NFATC/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Animales , Apoptosis/efectos de los fármacos , Calcineurina/química , Hipoxia de la Célula , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ciclosporina/farmacología , Modelos Animales de Enfermedad , Hipertensión Pulmonar/inducido químicamente , Hipertensión Pulmonar/metabolismo , Masculino , Monocrotalina/toxicidad , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/metabolismo , Factores de Transcripción NFATC/antagonistas & inhibidores , Factores de Transcripción NFATC/genética , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Arteria Pulmonar/citología , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal
18.
Cell Physiol Biochem ; 35(4): 1467-81, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25791507

RESUMEN

BACKGROUND: Pulmonary hypertension (PH) is characterized by sustained vasoconstriction, enhanced vasoreactivity and vascular remodeling, which leads to right heart failure and death. Despite several treatments are available, many forms of PH are still incurable. Ginsenoside Rb1, a principle active ingredient of Panax ginseng, exhibits multiple pharmacological effects on cardiovascular system, and suppresses monocrotaline (MCT)-induced right heart hypertrophy. However, its effect on the pulmonary vascular functions related to PH is unknown. METHODS: We examined the vasorelaxing effects of ginsenoside Rb1 on endothelin-1 (ET-1) induced contraction of pulmonary arteries (PAs) and store-operated Ca(2+) entry (SOCE) in pulmonary arterial smooth muscle cells (PASMCs) from chronic hypoxia (CH) and MCT-induced PH. RESULTS: Ginsenoside Rb1 elicited concentration-dependent relaxation of ET-1-induced PA contraction. The vasorelaxing effect was unaffected by nifedipine, but abolished by the SOCE blocker Gd(3+). Ginsenoside Rb1 suppressed cyclopiazonic acid (CPA)-induced PA contraction, and CPA-activated cation entry and Ca(2+) transient in PASMCs. ET-1 and CPA-induced contraction, and CPA-activated cation entry and Ca(2+) transients were enhanced in PA and PASMCs of CH and MCT-treated rats; the enhanced responses were abolished by ginsenoside Rb1. CONCLUSION: Ginsenoside Rb1 attenuates ET-1-induced contractile response via inhibition of SOCE, and it can effectively antagonize the enhanced pulmonary vasoreactivity in PH.


Asunto(s)
Calcio/metabolismo , Ginsenósidos/farmacología , Contracción Muscular/efectos de los fármacos , Arteria Pulmonar/metabolismo , Animales , Canales de Calcio/metabolismo , Hipoxia de la Célula , Células Cultivadas , Modelos Animales de Enfermedad , Endotelina-1/metabolismo , Gadolinio/toxicidad , Hipertensión Pulmonar/inducido químicamente , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/patología , Indoles/farmacología , Masculino , Monocrotalina/toxicidad , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Nifedipino/farmacología , Panax/química , Panax/metabolismo , Arteria Pulmonar/citología , Ratas , Ratas Sprague-Dawley , Retículo Sarcoplasmático/metabolismo
19.
Cell Physiol Biochem ; 36(6): 2121-36, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26279420

RESUMEN

BACKGROUND: Daunorubicin (DNR)-induced cardiotoxicity, which is closely associated with cardiomyocyte apoptosis, limits the drug's clinical application. The activation of the extracellular regulated protein kinases (ERKs) pathway is responsible for the pro-apoptosis effect of DNR Sodium ferulate (SF) has recently been found to attenuate both DNR-induced cardiotoxicity and mitochondrial apoptosis in juvenile rats. Nonetheless, the precise mechanism underlying SF-induced cardio-protection remains unclear. METHODS: The DNR-injured H9c2 cell model was prepared by incubating the cells in 1 µM DNR for 24 h. Amounts of 15.6, 31.3 or 62.5 µM SF were simultaneously added to the cells. The effect of SF on the cytotoxic and apoptotic parameters of the cells was studied by monitoring apoptosis regulation via the ERKs pathway. RESULTS: SF attenuated DNR-induced cell death (particularly apoptotic death), cTnI and ß-tubulin degradation, and cellular morphological changes. SF reduced mitochondrial membrane potential depolarization, cytochrome c leakage, and caspase-9 and caspase-3 activation. SF also decreased ERK1/2, phospho-ERK1/2, p53 and Bax expression and increased Bcl-2 expression. These effects were similar to the results observed when using the pharmacological ERKs phosphorylation inhibitor, AZD6244. CONCLUSION: We determined that SF protects H9c2 cells from DNR-induced apoptosis through a mechanism that involves the interruption of the ERKs signaling pathway.


Asunto(s)
Apoptosis/efectos de los fármacos , Ácidos Cumáricos/farmacología , Daunorrubicina/efectos adversos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Animales , Antineoplásicos/farmacología , Bencimidazoles/farmacología , Caspasa 9/metabolismo , Línea Celular , Forma de la Célula/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Citocromos c/metabolismo , Activación Enzimática/efectos de los fármacos , Células HL-60 , Humanos , Concentración 50 Inhibidora , Células K562 , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Fosforilación/efectos de los fármacos , Proteolisis/efectos de los fármacos , Ratas , Troponina I/metabolismo , Tubulina (Proteína)/metabolismo , Proteína X Asociada a bcl-2/metabolismo
20.
Yao Xue Xue Bao ; 50(1): 39-44, 2015 Jan.
Artículo en Zh | MEDLINE | ID: mdl-25924473

RESUMEN

We aimed to study the effect of allitridum (All) on the transient outward potassium current (Ito) of ventricular myocytes of spontaneously hypertensive rats (SHR). Totally 30 male SHRs were randomly divided into three groups: low-dose All group (7.5 mg·kg(-1)), high-dose All group (15.0 mg·kg(-1)) and normal saline group. The other 10 sex and age matched Wistar-kyoto rats (WKY) were also taken as control group (WKY group). All animals received i.p. administration for 8 weeks. The dual enzymatic method was used to separate single ventricular myocyte from animals. Patch-clamp technique was used to record Ito and analyze the effect of All on the current. It was shown that the left ventricular hypertrophy of SHR was reversed significantly by All. Furthermore, the density of Ito was recovered in both high and low dose All groups. The peak current densities of Ito were enhanced from 18.23±3.64 to 25.17±2.86 pA/pF (P<0.01) and 36.47±5.42 pA/pF (P<0.01) at +50 mV by All 7.5 mg·kg(-1) and 15.0 mg·kg(-1), respectively, which was not significantly different with WKY group. The effect was associated with positive shift of the steady-state, close-state inactivation, and shortened recovery from inactivation of Ito. It is concluded that All decreases the remodeling of Ito of ventricular hypertrophic myocytes of SHR.


Asunto(s)
Compuestos Alílicos/farmacología , Hipertrofia Ventricular Izquierda/tratamiento farmacológico , Miocitos Cardíacos/efectos de los fármacos , Canales de Potasio/metabolismo , Sulfuros/farmacología , Animales , Masculino , Miocitos Cardíacos/citología , Técnicas de Placa-Clamp , Ratas , Ratas Endogámicas SHR , Ratas Endogámicas WKY
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA