RESUMEN
Transcription regulation underlies stem cell function and development. Here, we elucidate an unexpected role of an essential ribogenesis factor, WDR43, as a chromatin-associated RNA-binding protein (RBP) and release factor in modulating the polymerase (Pol) II activity for pluripotency regulation. WDR43 binds prominently to promoter-associated noncoding/nascent RNAs, occupies thousands of gene promoters and enhancers, and interacts with the Pol II machinery in embryonic stem cells (ESCs). Nascent transcripts and transcription recruit WDR43 to active promoters, where WDR43 facilitates releases of the elongation factor P-TEFb and paused Pol II. Knockdown of WDR43 causes genome-wide defects in Pol II release and pluripotency-associated gene expression. Importantly, auxin-mediated rapid degradation of WDR43 drastically reduces Pol II activity, precluding indirect consequences. These results reveal an RNA-mediated recruitment and feedforward regulation on transcription and demonstrate an unforeseen role of an RBP in promoting Pol II elongation and coordinating high-level transcription and translation in ESC pluripotency.
Asunto(s)
Proteínas de Transporte de Catión/genética , Cromatina/química , Regulación del Desarrollo de la Expresión Génica , Células Madre Embrionarias de Ratones/metabolismo , ARN Polimerasa II/genética , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Transcripción Genética , Proteínas de Pez Cebra/genética , Animales , Sitios de Unión , Proteínas de Transporte de Catión/metabolismo , Diferenciación Celular , Línea Celular , Cromatina/metabolismo , Embrión de Mamíferos , Elementos de Facilitación Genéticos , Eliminación de Gen , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Células Madre Embrionarias de Ratones/citología , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Factor B de Elongación Transcripcional Positiva/genética , Factor B de Elongación Transcripcional Positiva/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Biosíntesis de Proteínas , Proteolisis , ARN Polimerasa II/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Transducción de Señal , Proteínas de Pez Cebra/metabolismoRESUMEN
An RNA-involved phase-separation model has been proposed for transcription control. However, the molecular links that connect RNA to the transcription machinery remain missing. Here we find that RNA-binding proteins (RBPs) constitute half of the chromatin proteome in embryonic stem cells (ESCs), some being colocalized with RNA polymerase (Pol) II at promoters and enhancers. Biochemical analyses of representative RBPs show that the paraspeckle protein PSPC1 inhibits the RNA-induced premature release of Pol II, and makes use of RNA as multivalent molecules to enhance the formation of transcription condensates and subsequent phosphorylation and release of Pol II. This synergistic interplay enhances polymerase engagement and activity via the RNA-binding and phase-separation activities of PSPC1. In ESCs, auxin-induced acute degradation of PSPC1 leads to genome-wide defects in Pol II binding and nascent transcription. We propose that promoter-associated RNAs and their binding proteins synergize the phase separation of polymerase condensates to promote active transcription.
Asunto(s)
ARN Polimerasa II/metabolismo , Proteínas de Unión al ARN/metabolismo , Transcripción Genética , Regulación de la Expresión Génica , Fosforilación , Regiones Promotoras Genéticas , Unión ProteicaRESUMEN
Inflammation is an essential defense response but operates at the cost of normal functions. Whether and how the negative impact of inflammation is monitored remains largely unknown. Acidification of the tissue microenvironment is associated with inflammation. Here we investigated whether macrophages sense tissue acidification to adjust inflammatory responses. We found that acidic pH restructured the inflammatory response of macrophages in a gene-specific manner. We identified mammalian BRD4 as a novel intracellular pH sensor. Acidic pH disrupts the transcription condensates containing BRD4 and MED1, via histidine-enriched intrinsically disordered regions. Crucially, decrease in macrophage intracellular pH is necessary and sufficient to regulate transcriptional condensates in vitro and in vivo, acting as negative feedback to regulate the inflammatory response. Collectively, these findings uncovered a pH-dependent switch in transcriptional condensates that enables environmental sensing to directly control inflammation, with a broader implication for calibrating the magnitude and quality of inflammation by the inflammatory cost.
RESUMEN
Organization of the genome into euchromatin and heterochromatin appears to be evolutionarily conserved and relatively stable during lineage differentiation. In an effort to unravel the basic principle underlying genome folding, here we focus on the genome itself and report a fundamental role for L1 (LINE1 or LINE-1) and B1/Alu retrotransposons, the most abundant subclasses of repetitive sequences, in chromatin compartmentalization. We find that homotypic clustering of L1 and B1/Alu demarcates the genome into grossly exclusive domains, and characterizes and predicts Hi-C compartments. Spatial segregation of L1-rich sequences in the nuclear and nucleolar peripheries and B1/Alu-rich sequences in the nuclear interior is conserved in mouse and human cells and occurs dynamically during the cell cycle. In addition, de novo establishment of L1 and B1 nuclear segregation is coincident with the formation of higher-order chromatin structures during early embryogenesis and appears to be critically regulated by L1 and B1 transcripts. Importantly, depletion of L1 transcripts in embryonic stem cells drastically weakens homotypic repeat contacts and compartmental strength, and disrupts the nuclear segregation of L1- or B1-rich chromosomal sequences at genome-wide and individual sites. Mechanistically, nuclear co-localization and liquid droplet formation of L1 repeat DNA and RNA with heterochromatin protein HP1α suggest a phase-separation mechanism by which L1 promotes heterochromatin compartmentalization. Taken together, we propose a genetically encoded model in which L1 and B1/Alu repeats blueprint chromatin macrostructure. Our model explains the robustness of genome folding into a common conserved core, on which dynamic gene regulation is overlaid across cells.
Asunto(s)
Elementos de Nucleótido Esparcido Largo , Secuencias Repetitivas de Ácidos Nucleicos , Animales , Análisis por Conglomerados , Elementos de Nucleótido Esparcido Largo/genética , Ratones , ARN , Secuencias Repetitivas de Ácidos Nucleicos/genética , RetroelementosRESUMEN
Embryonic stem cells (ESCs) exhibit high levels of ribosomal RNA (rRNA) transcription and ribosome biogenesis. Here, we reveal an unexpected role for an essential DEAD-box helicase, DDX18, in antagonizing the polycomb repressive complex 2 (PRC2) to prevent deposition of the repressive H3K27me3 mark onto rDNA in pluripotent cells. DDX18 binds and sequesters PRC2 in the outer layer of the nucleolus and counteracts PRC2 complex formation in vivo and in vitro. DDX18 knockdown leads to increased occupancy of PRC2 and H3K27me3 at rDNA loci, accompanied by drastically decreased rRNA transcription and reduced ribosomal protein expression and translation. Auxin-induced rapid degradation of DDX18 enhances PRC2 binding at rDNA. The inhibition of PRC2 partially rescues the effects of DDX18 depletion on rRNA transcription and ESC self-renewal. These results demonstrate a critical role for DDX18 in safeguarding the chromatin and transcriptional integrity of rDNA by counteracting the epigenetic silencing machinery to promote pluripotency.
Asunto(s)
ARN Helicasas DEAD-box/metabolismo , ADN Ribosómico/metabolismo , Células Madre Pluripotentes/metabolismo , Complejo Represivo Polycomb 2/metabolismo , Animales , Nucléolo Celular/metabolismo , Cromatina/metabolismo , ADN Ribosómico/genética , Desarrollo Embrionario/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Regulación del Desarrollo de la Expresión Génica , Técnicas de Inactivación de Genes , Células HEK293 , Humanos , Metilación , Ratones , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Células Madre Embrionarias de Ratones/ultraestructura , Células Madre Pluripotentes/citología , Unión Proteica , Proteolisis , ARN Ribosómico/metabolismo , Transcripción GenéticaRESUMEN
Repetitive elements are abundantly distributed in mammalian genomes. Here, we reveal a striking association between repeat subtypes and gene function. SINE, L1, and low-complexity repeats demarcate distinct functional categories of genes and may dictate the time and level of gene expression by providing binding sites for different regulatory proteins. Importantly, imaging and sequencing analysis show that L1 repeats sequester a large set of genes with specialized functions in nucleolus- and lamina-associated inactive domains that are depleted of SINE repeats. In addition, L1 transcripts bind extensively to its DNA in embryonic stem cells (ESCs). Depletion of L1 RNA in ESCs leads to relocation of L1-enriched chromosomal segments from inactive domains to the nuclear interior and de-repression of L1-associated genes. These results demonstrate a role of L1 DNA and RNA in gene silencing and suggest a general theme of genomic repeats in orchestrating the function, regulation, and expression of their host genes.
Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Genoma , Secuencias Repetitivas de Ácidos Nucleicos/genética , Animales , Secuencia de Bases , Nucléolo Celular/genética , Cromatina/metabolismo , Desarrollo Embrionario/genética , Células Madre Embrionarias/metabolismo , Células Madre Embrionarias/ultraestructura , Ontología de Genes , Células HEK293 , Humanos , Células K562 , Ratones , Modelos Genéticos , Lámina Nuclear/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , ARN/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Transcripción Genética , NucleolinaRESUMEN
This paper presents the results of an extended ASM2 model for the modeling and calibration of the role of extracellular polymeric substances (EPS) in phosphorus (P) removal in an anaerobic-aerobic process. In this extended ASM2 model, two new components, the bound EPS (XEPS) and the soluble EPS (SEPS), are introduced. Compared with the ASM2, 7.71, 8.53, and 9.28% decreases in polyphosphate (polyP) were observed in the extended ASM2 in three sequencing batch reactors feeding with different COD/P ratios, indicating that 7.71-9.28% of P in the liquid was adsorbed by EPS. Sensitive analysis indicated that, five parameters were the significant influential parameters and had been chosen for further model calibration by using the least square method to simulate by MATLAB. This extended ASM2 has been successfully established to simulate the output variables and provides a useful reference for the mathematic simulations of the role of EPS in biological phosphorus removal process.