RESUMEN
In the archaebacterium Methanocaldococcus jannaschii (M. jannaschii), the proteasomal regulatory particle (RP), a homohexameric complex of proteasome-activating nucleotidase (PAN), is responsible for target protein recognition, followed by unfolding and translocation of the bound protein into the core particle (CP) for degradation. Guided by structure-based mutagenesis, we identify amino acids and structural motifs that are essential for PAN function. Key residues line the axial channel of PAN, defining the apparent pathway of substrate translocation. Subcomplex II of PAN, comprising the ATPase domain, associates with the CP and drives ATP-dependent unfolding of the substrate protein, whereas the distal subcomplex I forms the entry port of the substrate translocation channel. A linker segment between subcomplexes I and II is essential for PAN function, implying functional and perhaps mechanical coupling between these domains. Sequence conservation suggests that the principles of PAN function are likely to apply to the proteasomal RP of eukaryotes.
Asunto(s)
Adenosina Trifosfatasas , Proteínas Arqueales , Methanococcales/enzimología , Complejo de la Endopetidasa Proteasomal/química , Complejo de la Endopetidasa Proteasomal/metabolismo , Conformación Proteica , Subunidades de Proteína , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Secuencia de Aminoácidos , Proteínas Arqueales/química , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Cristalografía por Rayos X , Methanococcales/genética , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Complejo de la Endopetidasa Proteasomal/genética , Pliegue de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , ARN Bacteriano/química , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Alineación de SecuenciaRESUMEN
Intramembrane proteolysis regulates diverse biological processes. Cleavage of substrate peptide bonds within the membrane bilayer is catalyzed by integral membrane proteases. Here we report the crystal structure of the transmembrane core domain of GlpG, a rhomboid-family intramembrane serine protease from Escherichia coli. The protein contains six transmembrane helices, with the catalytic Ser201 located at the N terminus of helix alpha4 approximately 10 A below the membrane surface. Access to water molecules is provided by a central cavity that opens to the extracellular region and converges on Ser201. One of the two GlpG molecules in the asymmetric unit has an open conformation at the active site, with the transmembrane helix alpha5 bent away from the rest of the molecule. Structural analysis suggests that substrate entry to the active site is probably gated by the movement of helix alpha5.
Asunto(s)
Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Endopeptidasas/química , Endopeptidasas/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Membrana Celular/química , Membrana Celular/metabolismo , Secuencia Conservada , Cristalografía por Rayos X , Proteínas de Unión al ADN/clasificación , Proteínas de Unión al ADN/genética , Endopeptidasas/clasificación , Endopeptidasas/genética , Escherichia coli/genética , Proteínas de Escherichia coli/clasificación , Proteínas de Escherichia coli/genética , Humanos , Proteínas de la Membrana/clasificación , Proteínas de la Membrana/genética , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Alineación de Secuencia , Homología Estructural de Proteína , Especificidad por Sustrato , Agua/química , Agua/metabolismoRESUMEN
Methods are detailed for isolating highly pure populations of spermatogonial stem cells from primary cultures of testis cells prepared from 22- to 24-day-old rats. The procedure is based on the principle that testicular somatic cells bind tightly to plastic and collagen matrices when cultured in serum-containing medium, whereas spermatogonia and spermatocytes do not bind to plastic or collagen when cultured in serum-containing medium. The collagen-non-binding testis cells obtained using these procedures are thus approx. 97% pure spermatogenic cells. Stem spermatogonia are then easily isolated from the purified spermatogenic population during a short incubation step in culture on laminin matrix. The spermatogenic cells that bind to laminin are more than 90% undifferentiated, type A spermatogonia and are greatly enriched in genetically modifiable stem cells that can develop into functional spermatozoa. This method does not require flow cytometry and can also be applied to obtain enriched cultures of mouse spermatogonial stem cells. The isolated spermatogonia provide a highly potent and effective source of stem cells that have been used to initiate in vitro and in vivo culture studies on spermatogenesis.
Asunto(s)
Células Madre Adultas/citología , Separación Celular/métodos , Espermatogonias/citología , Animales , Adhesión Celular , Técnicas de Cultivo de Célula/métodos , Medios de Cultivo , Masculino , Ratas , Ratas Sprague-Dawley , Túbulos Seminíferos/citología , EspermatogénesisRESUMEN
In adult males, spermatogonial stem cells function to replenish developing gametes that are continuously released from the testes as mature spermatozoa. Because of their potential importance to research, medicine, industry, and conservation, numerous attempts have been made in the past to cultivate sperma-togonial stem cells in vitro. However, only recently have culture methods been established that effectively promote the proliferation of mammalian spermatogonial stem cells in vitro. We describe a simple and reproducible protocol for the derivation and maintenance of mouse spermatogonial stem cell lines that proliferate for long periods of time in culture.
Asunto(s)
Células Madre Adultas/citología , Espermatogonias/citología , Animales , Técnicas de Cultivo de Célula/métodos , Línea Celular , Proliferación Celular , Técnicas de Cocultivo , Criopreservación , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos DBA , Mitomicina/farmacología , EspermatogénesisRESUMEN
Spermatogonial stem cells (SSCs) capable of self-renewal and differentiation are the foundation for spermatogenesis. Although several factors important for these processes have been identified, the fundamental mechanisms regulating SSC self-renewal and differentiation remain unknown. Here, we investigated a role for the Foxo transcription factors in mouse spermatogenesis and found that Foxo1 specifically marks mouse gonocytes and a subset of spermatogonia with stem cell potential. Genetic analyses showed that Foxo1 was required for both SSC homeostasis and the initiation of spermatogenesis. Combined deficiency of Foxo1, Foxo3, and Foxo4 resulted in a severe impairment of SSC self-renewal and a complete block of differentiation, indicating that Foxo3 and Foxo4, although dispensable for male fertility, contribute to SSC function. By conditional inactivation of 3-phosphoinositide-dependent protein kinase 1 (Pdk1) and phosphatase and tensin homolog (Pten) in the male germ line, we found that PI3K signaling regulates Foxo1 stability and subcellular localization, revealing that the Foxos are pivotal effectors of PI3K-Akt signaling in SSCs. We also identified a network of Foxo gene targets--most notably Ret--that rationalized the maintenance of SSCs by the Foxos. These studies demonstrate that Foxo1 expression in the spermatogenic lineage is intimately associated with the stem cell state and revealed what we believe to be novel Foxo-dependent mechanisms underlying SSC self-renewal and differentiation, with implications for common diseases, including male infertility and testicular cancer, due to abnormalities in SSC function.
Asunto(s)
Factores de Transcripción Forkhead/metabolismo , Espermatogénesis/fisiología , Espermatogonias/citología , Células Madre/fisiología , Animales , Proteínas de Ciclo Celular , Diferenciación Celular/fisiología , Femenino , Proteína Forkhead Box O1 , Proteína Forkhead Box O3 , Factores de Transcripción Forkhead/genética , Regulación de la Expresión Génica , Infertilidad Masculina/fisiopatología , Masculino , Ratones , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-ret/genética , Proteínas Proto-Oncogénicas c-ret/metabolismo , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora , Transducción de Señal/fisiología , Espermatogonias/fisiología , Células Madre/citología , Testículo/citologíaRESUMEN
An economical and simplified procedure to derive and propagate fully functional lines of undifferentiated rat spermatogonia in vitro is presented. The procedure is based on the formulation of a new spermatogonial culture medium termed SG medium. The SG medium is composed of a 1:1 mixture of Dulbecco modified Eagle medium:Ham F12 nutrient, 20 ng/ml of GDNF, 25 ng/ml of FGF2, 100 microM 2-mercaptoethanol, 6 mM l-glutamine, and a 1x concentration of B27 Supplement Minus Vitamin A solution. Using SG medium, six individual spermatogonial lines were derived from the testes of six separate Sprague-Dawley rats. After proliferating over a 120-day period in SG medium, stem cells within the spermatogonial cultures effectively regenerated spermatogenesis in testes of busulfan-treated recipient rats, which transmitted the donor cell haplotype to more than 75% of progeny by natural breeding. Subculturing in SG medium did not require protease treatment and was achieved by passaging the loosely bound spermatogonial cultures at 1:3 dilutions onto fresh monolayers of irradiated DR4 mouse fibroblasts every 12 days. Spermatogonial lines derived and propagated using SG medium were characterized as homogeneous populations of ZBTB16(+) DAZL(+) cells endowed with spermatogonial stem cell potential.
Asunto(s)
Medios de Cultivo/química , Medios de Cultivo/farmacología , Espermatogonias/citología , Células Madre/citología , Animales , Técnicas de Cultivo de Célula , Procesos de Crecimiento Celular/efectos de los fármacos , Células Cultivadas , Técnicas de Cocultivo/métodos , Eficiencia , Femenino , Alimentos , Masculino , Ratones , Modelos Biológicos , Linaje , Ratas , Ratas Sprague-Dawley , Ratas Transgénicas , Espermatogonias/efectos de los fármacos , Células Madre/efectos de los fármacos , Células Madre/fisiología , Testículo/trasplanteRESUMEN
Mammalian spermatogenesis is initiated and sustained by spermatogonial stem cells (SSCs) through self-renewal and differentiation. The basic question of whether SSCs have the potential to specify self-renewal and differentiation in a cell-autonomous manner has yet to be addressed. Here, we show that rat SSCs in ex vivo culture conditions consistently give rise to two distinct types of progeny: new SSCs and differentiating germ cells, even when they have been exposed to virtually identical microenvironments. Quantitative experimental measurements and mathematical modeling indicates that fate decision is stochastic, with constant probability. These results reveal an unexpected ability in a mammalian SSC to specify both self-renewal and differentiation through a self-directed mechanism, and further suggest that this mechanism operates according to stochastic principles. These findings provide an experimental basis for autonomous and stochastic fate choice as an alternative strategy for SSC fate bifurcation, which may also be relevant to other stem cell types.
Asunto(s)
Diferenciación Celular/fisiología , Espermatogonias/citología , Células Madre/citología , Animales , Comunicación Celular/fisiología , División Celular/fisiología , Línea Celular , Proliferación Celular , Células Cultivadas , Simulación por Computador , Secuencia Conservada , Líquido Extracelular/citología , Líquido Extracelular/fisiología , Células Germinativas/citología , Células Germinativas/fisiología , Masculino , Ratones , Ratas , Ratas Sprague-Dawley , Espermatogonias/fisiología , Células Madre/fisiología , Procesos EstocásticosRESUMEN
Regulated intramembrane proteolysis by members of the site-2 protease (S2P) family is an important signaling mechanism conserved from bacteria to humans. Here we report the crystal structure of the transmembrane core domain of an S2P metalloprotease from Methanocaldococcus jannaschii. The protease consists of six transmembrane segments, with the catalytic zinc atom coordinated by two histidine residues and one aspartate residue approximately 14 angstroms into the lipid membrane surface. The protease exhibits two distinct conformations in the crystals. In the closed conformation, the active site is surrounded by transmembrane helices and is impermeable to substrate peptide; water molecules gain access to zinc through a polar, central channel that opens to the cytosolic side. In the open conformation, transmembrane helices alpha1 and alpha6 separate from each other by 10 to 12 angstroms, exposing the active site to substrate entry. The structure reveals how zinc embedded in an integral membrane protein can catalyze peptide cleavage.