Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Neurosci ; 33(36): 14318-30, 2013 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-24005285

RESUMEN

Mounting evidence points to a role for endogenous reactive oxygen species (ROS) in cell signaling, including in the control of cell proliferation, differentiation, and fate. However, the function of ROS and their molecular regulation in embryonic mouse neural progenitor cells (eNPCs) has not yet been clarified. Here, we describe that physiological ROS are required for appropriate timing of neurogenesis in the developing telencephalon in vivo and in cultured NPCs, and that the tumor suppressor p53 plays a key role in the regulation of ROS-dependent neurogenesis. p53 loss of function leads to elevated ROS and early neurogenesis, while restoration of p53 and antioxidant treatment partially reverse the phenotype associated with premature neurogenesis. Furthermore, we describe that the expression of a number of neurogenic and oxidative stress genes relies on p53 and that both p53 and ROS-dependent induction of neurogenesis depend on PI3 kinase/phospho-Akt signaling. Our results suggest that p53 fine-tunes endogenous ROS levels to ensure the appropriate timing of neurogenesis in eNPCs. This may also have implications for the generation of tumors of neurodevelopmental origin.


Asunto(s)
Células-Madre Neurales/metabolismo , Neurogénesis , Fosfatidilinositol 3-Quinasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Proteína p53 Supresora de Tumor/metabolismo , Animales , Células Cultivadas , Ratones , Células-Madre Neurales/citología , Estrés Oxidativo/genética , Telencéfalo/citología , Telencéfalo/embriología , Telencéfalo/metabolismo , Proteína p53 Supresora de Tumor/genética
2.
J Neurosci ; 32(40): 13956-70, 2012 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-23035104

RESUMEN

Following spinal trauma, the limited physiological axonal sprouting that contributes to partial recovery of function is dependent upon the intrinsic properties of neurons as well as the inhibitory glial environment. The transcription factor p53 is involved in DNA repair, cell cycle, cell survival, and axonal outgrowth, suggesting p53 as key modifier of axonal and glial responses influencing functional recovery following spinal injury. Indeed, in a spinal cord dorsal hemisection injury model, we observed a significant impairment in locomotor recovery in p53(-/-) versus wild-type mice. p53(-/-) spinal cords showed an increased number of activated microglia/macrophages and a larger scar at the lesion site. Loss- and gain-of-function experiments suggested p53 as a direct regulator of microglia/macrophages proliferation. At the axonal level, p53(-/-) mice showed a more pronounced dieback of the corticospinal tract (CST) and a decreased sprouting capacity of both CST and spinal serotoninergic fibers. In vivo expression of p53 in the sensorimotor cortex rescued and enhanced the sprouting potential of the CST in p53(-/-) mice, while, similarly, p53 expression in p53(-/-) cultured cortical neurons rescued a defect in neurite outgrowth, suggesting a direct role for p53 in regulating the intrinsic sprouting ability of CNS neurons. In conclusion, we show that p53 plays an important regulatory role at both extrinsic and intrinsic levels affecting the recovery of motor function following spinal cord injury. Therefore, we propose p53 as a novel potential multilevel therapeutic target for spinal cord injury.


Asunto(s)
Locomoción/fisiología , Neuronas/fisiología , Traumatismos de la Médula Espinal/fisiopatología , Regeneración de la Medula Espinal/fisiología , Proteína p53 Supresora de Tumor/fisiología , Animales , Células Cultivadas , Cicatriz/patología , Cordotomía , Conducta Exploratoria/fisiología , Genes p53 , Calor , Cojera Animal/etiología , Cojera Animal/fisiopatología , Activación de Macrófagos , Masculino , Ratones , Ratones Noqueados , Microglía/patología , Plasticidad Neuronal/fisiología , Tractos Piramidales/patología , Recuperación de la Función , Degeneración Retrógrada , Umbral Sensorial , Neuronas Serotoninérgicas/fisiología , Traumatismos de la Médula Espinal/genética , Regeneración de la Medula Espinal/genética , Proteína p53 Supresora de Tumor/deficiencia
3.
Brain ; 134(Pt 7): 2134-48, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21705428

RESUMEN

Axonal regeneration and related functional recovery following axonal injury in the adult central nervous system are extremely limited, due to a lack of neuronal intrinsic competence and the presence of extrinsic inhibitory signals. As opposed to what occurs during nervous system development, a weak proregenerative gene expression programme contributes to the limited intrinsic capacity of adult injured central nervous system axons to regenerate. Here we show, in an optic nerve crush model of axonal injury, that adenoviral (cytomegalovirus promoter) overexpression of the acetyltransferase p300, which is regulated during retinal ganglion cell maturation and repressed in the adult, can promote axonal regeneration of the optic nerve beyond 0.5 mm. p300 acetylates histone H3 and the proregenerative transcription factors p53 and CCAAT-enhancer binding proteins in retinal ganglia cells. In addition, it directly occupies and acetylates the promoters of the growth-associated protein-43, coronin 1 b and Sprr1a and drives the gene expression programme of several regeneration-associated genes. On the contrary, overall increase in cellular acetylation using the histone deacetylase inhibitor trichostatin A, enhances retinal ganglion cell survival but not axonal regeneration after optic nerve crush. Therefore, p300 targets both the epigenome and transcription to unlock a post-injury silent gene expression programme that would support axonal regeneration.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/fisiología , Degeneración Nerviosa/terapia , Regeneración Nerviosa/genética , Factores de Transcripción p300-CBP/metabolismo , Factores de Edad , Animales , Animales Recién Nacidos , Proteínas Portadoras/metabolismo , Células Cultivadas , Inmunoprecipitación de Cromatina , Modelos Animales de Enfermedad , Proteína GAP-43/metabolismo , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas Fluorescentes Verdes/genética , Inhibidores de Histona Desacetilasas/farmacología , Ácidos Hidroxámicos/farmacología , Técnicas In Vitro , Compresión Nerviosa/métodos , Degeneración Nerviosa/etiología , Regeneración Nerviosa/fisiología , Proteínas del Tejido Nervioso/metabolismo , Neuritas/efectos de los fármacos , Traumatismos del Nervio Óptico/complicaciones , Ratas , Retina/citología , Células Ganglionares de la Retina/citología , Células Ganglionares de la Retina/efectos de los fármacos , Transfección/métodos , Tubulina (Proteína)/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Factores de Transcripción p300-CBP/genética
4.
J Biol Chem ; 284(28): 18816-23, 2009 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-19443652

RESUMEN

Transcription is essential for neurite and axon outgrowth during development. Recent work points to the involvement of nuclear factor of activated T cells (NFAT) in the regulation of genes important for axon growth and guidance. However, NFAT has not been reported to directly control the transcription of axon outgrowth-related genes. To identify transcriptional targets, we performed an in silico promoter analysis and found a putative NFAT site within the GAP-43 promoter. Using in vitro and in vivo experiments, we demonstrated that NFAT-3 regulates GAP-43, but unexpectedly, does not promote but represses the expression of GAP-43 in neurons and in the developing brain. Specifically, in neuron-like PC-12 cells and in cultured cortical neurons, the overexpression of NFAT-3 represses GAP-43 activation mediated by neurotrophin signaling. Using chromatin immunoprecipitation assays, we also show that prior to neurotrophin activation, endogenous NFAT-3 occupies the GAP-43 promoter in PC-12 cells, in cultured neurons, and in the mouse brain. Finally, we observe that NFAT-3 is required to repress the physiological expression of GAP-43 and other pro-axon outgrowth genes in specific developmental windows in the mouse brain. Taken together, our data reveal an unexpected role for NFAT-3 as a direct transcriptional repressor of GAP-43 expression and suggest a more general role for NFAT-3 in the control of the neuronal outgrowth program.


Asunto(s)
Proteína GAP-43/metabolismo , Factores de Transcripción NFATC/fisiología , Neuronas/patología , Transcripción Genética , Animales , Sitios de Unión , Encéfalo/embriología , Encéfalo/metabolismo , Diferenciación Celular , Línea Celular Tumoral , Núcleo Celular/metabolismo , Ratones , Ratones Endogámicos C57BL , Factores de Transcripción NFATC/metabolismo , Neuronas/metabolismo , Células PC12 , Ratas , Ratas Sprague-Dawley , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA