Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 210: 111873, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33418157

RESUMEN

Food availability represents a major worldwide concern due to population growth, increased demand, and climate change. Therefore, it is imperative to identify compounds that can improve crop performance. Plant biostimulants have gained prominence because of their potentials to increase germination, productivity and quality of a wide range of horticultural and agronomic crops. Phosphite (Phi), an analog of orthophosphate, is an emerging biostimulant used in horticulture and agronomy. The aim of this study was to uncover the molecular mechanisms through which Phi acts as a biostimulant with potential effects of overall plant growth. Field and greenhouse experiments, using 4 potato cultivars, showed that following Phi applications, plant performance, including several physio-biochemical traits, crop productivity, and quality traits, were significantly improved. RNA sequencing of control and Phi-treated plants of cultivar Xingjia No. 2, at 0 h, 6 h, 24 h, 48 h, 72 h and 96 h after the Phi application for 24 h revealed extensive changes in the gene expression profiles. A total of 2856 differentially expressed genes were identified, suggesting that multiple pathways of primary and secondary metabolism, such as flavonoids biosynthesis, starch and sucrose metabolism, and phenylpropanoid biosynthesis, were strongly influenced by foliar applications of Phi. GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analyses associated with defense responses revealed significant effects of Phi on a plethora of defense mechanisms. These results suggest that Phi acted as a biostimulant by priming the plants, that was, by triggering dynamic changes in gene expression and modulating metabolic fluxes in a way that allowed plants to perform better. Therefore, Phi usage has the potential to improve crop yield and health, alleviating the challenges posed by the need of feeding a growing world population, while minimizing the agricultural impact on human health and environment.


Asunto(s)
Fosfitos/farmacología , Solanum tuberosum/efectos de los fármacos , Metabolismo de los Hidratos de Carbono/efectos de los fármacos , Solanum tuberosum/crecimiento & desarrollo , Solanum tuberosum/metabolismo , Estrés Fisiológico/efectos de los fármacos , Transcriptoma/efectos de los fármacos
2.
Ecotoxicol Environ Saf ; 190: 110048, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-31837570

RESUMEN

Phosphite (Phi), an analog of phosphate (Pi) anion, is emerging as a potential biostimulator, fungicide and insecticide. Here, we reported that Phi also significantly enhanced thermotolerance in potatoes under heat stress. Potato plants with and without Phi pretreatment were exposed to heat stress and their heat tolerance was examined by assessing the morphological characteristics, photosynthetic pigment content, photosystem II (PS II) efficiency, levels of oxidative stress, and level of DNA damage. In addition, RNA-sequencing (RNA-Seq) was adopted to investigate the roles of Phi signals and the underlying heat resistance mechanism. RNA-Seq revealed that Phi orchestrated plant immune responses against heat stress by reprograming global gene expressions. Results from physiological data combined with RNA-Seq suggested that the supply of Phi not only was essential for the better plant performance, but also improved thermotolerance of the plants by alleviating oxidative stress and DNA damage, and improved biosynthesis of osmolytes and defense metabolites when exposed to unfavorable thermal conditions. This is the first study to explore the role of Phi in thermotolerance in plants, and the work can be applied to other crops under the challenging environment.


Asunto(s)
Fosfitos/farmacología , Solanum tuberosum/efectos de los fármacos , Termotolerancia/efectos de los fármacos , Daño del ADN , Respuesta al Choque Térmico/efectos de los fármacos , Estrés Oxidativo , Fotosíntesis/efectos de los fármacos , Complejo de Proteína del Fotosistema II/metabolismo , RNA-Seq , Plantones/efectos de los fármacos , Plantones/genética , Plantones/inmunología , Plantones/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/inmunología , Solanum tuberosum/metabolismo
3.
Pathogens ; 9(3)2020 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-32121090

RESUMEN

Potato late blight (Phytophtora infestans) is among the most severely damaging diseases of potato (Solanum tuberusom L.) worldwide, causing serious damages in potato leaves and tubers. In the present study, the effects of potassium phosphite (KPhi) applications on photosynthetic parameters, enzymatic and non-enzymatic antioxidant properties, hydrogen peroxide (H2O2) and malondialdehyde (MDA), total protein and total carbohydrate of potato leaves challenged with P. infestans pathogen were investigated. Potato leaves were sprayed five times with KPhi (0.5%) during the growing season prior to inoculation with P. infestans. The potato leaves were artificially infected by the LC06-44 pathogen isolate. The leaves were sampled at 0, 24, 48, 72 and 96 h after the infection for evaluations. P. infestans infection reduced chlorophyll (Chl) pigments contents, chlorophyll fluorescence, carotenoid (Car) and anthocyanin contents and increased the accumulation of H2O2 and MDA. Meanwhile, our result showed that KPhi treatment alleviated adverse effect of late blight in potato leaves. KPhi application also increased plant tolerance to the pathogen with improved photosynthetic parameters Chl a, b, total Chl, Car, and anthocyanin compare to controls. Moreover, the increased oxidative enzymes activity of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APx), and non-enzymatic substances such as phenolics, flavonoids and proline were found in KPhi treated plants, compared to untreated plants after inoculation. In addition, KPhi application followed by P. infestans infection also decreased the content of H2O2 and MDA, but increased the total protein and total carbohydrate contents in potato leaves. The consequence of current research indicated that KPhi played a vital role in pathogen tolerance, protecting the functions of photosynthetic apparatus by improved oxidative levels and physio-biochemical compounds in potato leaves.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA