Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Macromol Biosci ; 24(2): e2300333, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37750477

RESUMEN

In recent years, the development of new type wound dressings has gradually attracted more attention. Bacterial cellulose (BC) is a natural polymer material with various unique properties, such as ultrafine 3D nanonetwork structure, high water retention capacity, and biocompatibility. These properties allow BC to be used independently or in combination with different components (such as biopolymers and nanoparticles) to achieve diverse effects. This means that BC has great potential as a wound dressing. However, systematic summaries for the production and commercial application of BC-based wound dressings are still lacking. Therefore, this review provides a detailed introduction to the production fermentation process of BC, including various production strains and their biosynthetic mechanisms. Subsequently, with regard to the functional deficiencies of bacterial cellulose as a wound dressing, recent research progress in this area is enumerated. Finally, prospects are discussed for the low-cost production and high-value-added product development of BC-based wound dressings.


Asunto(s)
Bacterias , Celulosa , Celulosa/química , Vendajes , Biopolímeros/uso terapéutico , Biopolímeros/química , Polímeros
2.
Mater Horiz ; 11(5): 1234-1250, 2024 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-38131412

RESUMEN

Conductive hydrogels have attracted much attention for their wide application in the field of flexible wearable sensors due to their outstanding flexibility, conductivity and sensing properties. However, the weak mechanical properties, lack of frost resistance and susceptibility to microbial contamination of traditional conductive hydrogels greatly limit their practical application. In this work, multifunctional polyvinyl alcohol (PVA)/carboxymethyl cellulose (CMC)/poly(acrylamide-co-1-vinyl-3-butylimidazolium bromide) (P(AAm-co-VBIMBr)) (PCPAV) ionic conductive hydrogels with high strength and good conductive, transparent, anti-freezing and antibacterial properties were constructed by introducing a network of chemically crosslinked AAm and VBIMBr copolymers into the base material of PVA and CMC by in situ free radical polymerization. Owing to the multiple interactions between the polymers, including covalent crosslinking, multiple hydrogen bonding interactions, and electrostatic interactions, the obtained ionic conductive hydrogels exhibit a high tensile strength (360.6 kPa), a large elongation at break (810.6%), good toughness, and fatigue resistance properties. The introduction of VBIMBr endows the PCPAV hydrogels with excellent transparency (∼92%), a high ionic conductivity (15.2 mS cm-1), antimicrobial activity and good flexibility and conductivity at sub-zero temperatures. Notably, the PCPAV hydrogels exhibit a wide strain range (0-800%), high strain sensitivity (GF = 3.75), fast response, long-term stability, and fantastic durability, which enable them to detect both large joint movements and minute muscle movements. Based on these advantages, it is believed that the PCPAV-based hydrogel sensors would have potential applications in health monitoring, human motion detection, soft robotics, ionic skins, human-machine interfaces, and other flexible electronic devices.


Asunto(s)
Frío , Deportes , Humanos , Movimiento (Física) , Temperatura , Carboximetilcelulosa de Sodio , Conductividad Eléctrica , Hidrogeles , Iones
3.
Recent Pat Nanotechnol ; 14(1): 56-63, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31746300

RESUMEN

BACKGROUND: Wastewater involving a lot of contaminants like organic dyes from the textile finishing industry causes a greater adverse impact on human beings. There are many patents on nanofibers involved metallic oxides, this paper studies photocatalytic degradation of free-pollution Zinc Oxide (ZnO) nanomaterials on dye decontamination. OBJECTIVE: Polyacrylonitrile (PAN) nanofibrous membranes loaded with Zinc Oxide (ZnO) nanowires were fabricated and evaluated for photocatalytic degradation. METHODS: In this work, Polyacrylonitrile (PAN) nanofibrous membranes loaded with ZnO seeds were prepared by electrospinning PAN/Zn (Ac)2 solution followed by a thermal decomposition process. ZnO nanowires were hydrothermally grown on the surface of PAN nanofibers. The effects of the ratio of PAN and zinc acetate in a solution, decomposition temperature and ammonia (NH4OH) on the morphologies of ZnO nanowires were observed. ZnO nanowires showed the optimum morphologies when the ratio of PAN/Zn (Ac)2 was 10:1.5. The decomposition temperature was 150oC, and NH4OH was added in the hydrothermal reaction. The photocatalytic degradation of Rhodamine B solution under UV irradiation was used as a model reaction. The photodegradation ability of the ZnO @PAN membrane doped with cerium (Sm) was also investigated. RESULTS: Slight Sm doping increased the photocatalytic degradation rate from 57% to 89% under ultraviolet light irradiation for 2h. After 5 times of cycling under the same conditions, it still maintained the dye decolorization rate that was above 65%. CONCLUSION: Sm doped ZnO nanowires @PAN nanofibrous membranes were easily produced and could provide a novel process for the degradation of dye decontamination.

4.
Nanomaterials (Basel) ; 8(10)2018 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-30274166

RESUMEN

An auxiliary electrode introduced in traditional spinneret electrospinning is an effective and powerful technique to improve the production rate of nanofibers. In this work, the effects of the arrangement of auxiliary electrode, applied voltage, injection speed, and the distance between the electrode tip and the spinneret tip (ESD) on the jet number and the morphology of polyvinyl alcohol (PVA) nanofibers were investigated systematically. The results showed that the number of jets firstly increased and then decreased with the increase of applied voltage and ESD, respectively, while increasing with the injection speed in both the auxiliary electrode in the vertical position and parallel position. The average nanofiber diameter decreased with increasing of applied voltage and injection speed, but decreasing in ESD in these two positions. The numerical simulation results revealed that the auxiliary electrode primarily influenced the electric field intensity in the spinning area. This work provides a deep understanding of multiple jets in electrospinning.

5.
Polymers (Basel) ; 10(12)2018 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-30961235

RESUMEN

Porous polym er materials have received great interest in both academic and industrial fields due to their wide range of applications. In this work, a porous polyamide 6 (PA6) material was prepared by a facile solution foaming strategy. In this approach, a sodium carbonate (SC) aqueous solution acted as the foaming agent that reacted with formic acid (FA), generating CO2 and causing phase separation of polyamide (PA). The influence of the PA/FA solution concentration and Na2CO3 concentration on the microstructures and physical properties of prepared PA foams were investigated, respectively. PA foams showed a hierarchical porous structure along the foaming direction. The mean pore dimension ranged from hundreds of nanometers to several microns. Low amounts of sodium salt generated from a neutralization reaction played an important role of heterogeneous nucleation, which increased the crystalline degree of PA foams. The porous PA materials exhibited low thermal conductivity, high crystallinity and good mechanical properties. The novel strategy in this work could produce PA foams on a large scale for potential engineering applications.

6.
Carbohydr Polym ; 175: 464-472, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28917889

RESUMEN

Cellulose nanocrystal (CNC) was extracted from Carex meyeriana Kunth (CMK) by a combination of TEMPO oxidation and mechanical homogenization method, and used to remove methylene blue (MB) from aqueous solution. After alkali-oxygen treatment, the aqueous biphasic system (polyethylene glycol/inorganic salt) was applied to further remove lignin from CMK. The characteriazation of CNC, and the effects of H2O2 dosage, CNC dosage, adsorption time, and initial MB concentration on the MB removal capacity of CNC were investigated. The results showed that the removal percentage of MB by CNC was raised with the increase of H2O2 and CNC dosage. The adsorption kinetics of prepared CNC followed the pseudo-second-order model, and the adsorption isotherms fitted well to the Langmuir model with a calculated maximum adsoption capacity of 217.4mg/g, which was higher than those of CNC extracted by acid hydrolysis method, indicating CNC extracted from CMK had promising potentials in the field of MB adsorption.


Asunto(s)
Carex (Planta)/química , Celulosa/química , Azul de Metileno/metabolismo , Nanopartículas/química , Contaminantes Químicos del Agua/metabolismo , Adsorción , Peróxido de Hidrógeno , Concentración de Iones de Hidrógeno , Cinética , Purificación del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA