Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-36531804

RESUMEN

Oral squamous cell carcinoma (OSCC) is one of the most common lip and oral cavity cancer types. It requires early detection via various medical technologies to improve the survival rate. While most detection techniques for OSCC require testing in a centralized lab to confirm cancer type, a point of care detection technique is preferred for on-site use and quick result readout. The modular biological sensor utilizing transistor-based technology has been leveraged for testing CIP2A, and optimal transistor gate voltage and load resistance for sensing setup was investigated. Sensitivities of 1 × 10-15 g/ml have been obtained for both detections of pure CIP2A protein and HeLa cell lysate using identical test conditions via serial dilution. The superior time-saving and high accuracy testing provides opportunities for rapid clinical diagnosis in the medical space.

2.
Cell Biosci ; 12(1): 82, 2022 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-35659106

RESUMEN

BACKGROUND: Traumatic spinal cord injury (SCI)-induced neuroinflammation results in secondary neurological destruction and functional disorder. Previous findings showed that microglial pyroptosis plays a crucial role in neuroinflammation. Thus, it is necessary to conduct a comprehensive investigation of the mechanisms associated with post-SCI microglial pyroptosis. The Fanconi Anemia Group C complementation group gene (FANCC) has been previously reported to have an anti-inflammation effect; however, whether it can regulate microglial pyroptosis remains unknown. Therefore, we probed the mechanism associated with FANCC-mediated microglial pyroptosis and neuroinflammation in vitro and in vivo in SCI mice. METHODS: Microglial pyroptosis was assessed by western blotting (WB) and immunofluorescence (IF), whereas microglial-induced neuroinflammation was evaluated by WB, Enzyme-linked immunosorbent assays and IF. Besides, flow cytometry, TdT-mediated dUTP Nick-End Labeling staining and WB were employed to examine the level of neuronal apoptosis. Morphological changes in neurons were assessed by hematoxylin-eosin and Luxol Fast Blue staining. Finally, locomotor function rehabilitation was analyzed using the Basso Mouse Scale and Louisville Swim Scale. RESULTS: Overexpression of FANCC suppressed microglial pyroptosis via inhibiting p38/NLRP3 expression, which in turn reduced neuronal apoptosis. By contrast, knockdown of FANCC increased the degree of neuronal apoptosis by aggravating microglial pyroptosis. Besides, increased glial scar formation, severe myelin sheath destruction and poor axon outgrowth were observed in the mice transfected with short hairpin RNA of FANCC post SCI, which caused reduced locomotor function recovery. CONCLUSIONS: Taken together, a previously unknown role of FANCC was identified in SCI, where its deficiency led to microglia pyroptosis, neuronal apoptosis and neurological damage. Mechanistically, FANCC mediated microglia pyroptosis and the inflammatory response via regulating the p38/NLRP3 pathway.

3.
Artículo en Inglés | MEDLINE | ID: mdl-36032198

RESUMEN

Leakage of human cerebrospinal fluid (CSF) caused by trauma or other reasons presents exceptional challenges in clinical analysis and can have severe medical repercussions. Conventional test methods, including enzyme-linked immunosorbent assay and immunofixation electrophoresis testing, typically are performed at a few clinical reference laboratories, which may potentially delay proper diagnosis and treatment. At the same time, medical imaging can serve as a secondary diagnosis tool. This work presented here reports the use of a point-of-care electrochemical sensor for detection of beta-2-transferrin (B2T), a unique isomer of transferrin that is present exclusively in human CSF but is absent in other bodily fluids. Limits of detection were examined via serial dilution of human samples with known B2T concentrations down to 7 × 10-12 g B2T/ml while maintaining excellent sensitivity. Nine human samples with varying levels of B2T were compared using up to 100 times dilution to confirm the validity of sensor output across different patient samples.

4.
Artículo en Inglés | MEDLINE | ID: mdl-36032199

RESUMEN

The SARS-CoV-2 pandemic has had a significant impact worldwide. Currently, the most common detection methods for the virus are polymerase chain reaction (PCR) and lateral flow tests. PCR takes more than an hour to obtain the results and lateral flow tests have difficulty with detecting the virus at low concentrations. In this study, 60 clinical human saliva samples, which included 30 positive and 30 negative samples confirmed with RT-PCR, were screened for COVID-19 using disposable glucose biosensor strips and a reusable printed circuit board. The disposable strips were gold plated and functionalized to immobilize antibodies on the gold film. After functionalization, the strips were connected to the gate electrode of a metal-oxide-semiconductor field-effect transistor on the printed circuit board to amplify the test signals. A synchronous double-pulsed bias voltage was applied to the drain of the transistor and strips. The resulting change in drain waveforms was converted to digital readings. The RT-PCR-confirmed saliva samples were tested again using quantitative PCR (RT-qPCR) to determine cycling threshold (Ct) values. Ct values up to 45 refer to the number of amplification cycles needed to detect the presence of the virus. These PCR results were compared with digital readings from the sensor to better evaluate the sensor technology. The results indicate that the samples with a range of Ct values from 17.8 to 35 can be differentiated, which highlights the increased sensitivity of this sensor technology. This research exhibits the potential of this biosensor technology to be further developed into a cost-effective, point-of-care, and portable rapid detection method for SARS-CoV-2.

5.
Artículo en Inglés | MEDLINE | ID: mdl-34055475

RESUMEN

Detection of the SARS-CoV-2 spike protein and inactivated virus was achieved using disposable and biofunctionalized functional strips, which can be connected externally to a reusable printed circuit board for signal amplification with an embedded metal-oxide-semiconductor field-effect transistor (MOSFET). A series of chemical reactions was performed to immobilize both a monoclonal antibody and a polyclonal antibody onto the Au-plated electrode used as the sensing surface. An important step in the biofunctionalization, namely, the formation of Au-plated clusters on the sensor strips, was verified by scanning electron microscopy, as well as electrical measurements, to confirm successful binding of thiol groups on this Au surface. The functionalized sensor was externally connected to the gate electrode of the MOSFET, and synchronous pulses were applied to both the sensing strip and the drain contact of the MOSFET. The resulting changes in the dynamics of drain waveforms were converted into analog voltages and digital readouts, which correlate with the concentration of proteins and virus present in the tested solution. A broad range of protein concentrations from 1 fg/ml to 10 µg/ml and virus concentrations from 100 to 2500 PFU/ml were detectable for the sensor functionalized with both antibodies. The results show the potential of this approach for the development of a portable, low-cost, and disposable cartridge sensor system for point-of-care detection of viral diseases.

6.
Materials (Basel) ; 13(15)2020 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-32722625

RESUMEN

To mitigate the corrosion of titanium implants and improve implant longevity, we investigated the capability to coat titanium implants with SiC and determined if the coating could remain intact after simulated implant placement. Titanium disks and titanium implants were coated with SiC using plasma-enhanced chemical vapor deposition (PECVD) and were examined for interface quality, chemical composition, and coating robustness. SiC-coated titanium implants were torqued into a Poly(methyl methacrylate) (PMMA) block to simulate clinical implant placement followed by energy dispersive spectroscopy to determine if the coating remained intact. After torquing, the atomic concentration of the detectable elements (silicon, carbon, oxygen, titanium, and aluminum) remained relatively unchanged, with the variation staying within the detection limits of the Energy Dispersive Spectroscopy (EDS) tool. In conclusion, plasma-enhanced chemical vapor deposited SiC was shown to conformably coat titanium implant surfaces and remain intact after torquing the coated implants into a material with a similar hardness to human bone mass.

7.
IEEE Trans Biomed Circuits Syst ; 14(6): 1362-1370, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33035161

RESUMEN

This paper presents a pulse-stimulus sensor readout circuit for use in cardiovascular disease examinations. The sensor is based on a gold nanoparticle plate with an antibody post-modification. The proposed system utilizes gated pulses to detect the biomarker Cardiac Troponin I in an ionic solution. The characteristic of the electrostatic double-layer capacitor generated by the analyte is related to the concentration of Cardiac Troponin I in the solvent. After sensing by the transistor, a current-to-frequency converter (I-to-F) and delay-line-based time-to-digital converter (TDC) convert the information into a series of digital codes for further analysis. The design is fabricated in a 0.18-µm standard CMOS process. The chip occupies an area of 0.92 mm2 and consumes 125 µW. In the measurements, the proposed circuit achieved a 1.77 Hz/pg-mL sensitivity and 72.43 dB dynamic range.


Asunto(s)
Técnicas Biosensibles , Troponina I/análisis , Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , Electrodos , Diseño de Equipo , Oro/química , Humanos , Nanopartículas del Metal/química , Semiconductores , Troponina I/sangre
8.
Chemosphere ; 215: 827-834, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30359952

RESUMEN

Black carbon such as biochar has been shown to support microbial redox transformation by accepting and/or donating electrons. Electron storage capacity (ESC) is an important property that determines the capacity of a biochar to mediate redox processes in natural and engineered systems. However, it remained unclear whether a biochar's ESC is constant and reversible and if so to what extent, over what redox potential range ESC is distributed, and what fraction of the ESC is microbially accessible. In this study, we developed chemical methods that employed combinations of reductants and oxidants of different potentials - Ti(III) citrate, ferricyanide, dithionite, and dissolved O2 - to measure the ESC of Soil Reef biochar, a wood-derived biochar that can serve as an electron donor or acceptor for Geobacter metallireducens. For a given oxidant-reductant pair, the ESC obtained over multiple redox cycles was constant and fully reversible, though lower than that of the virgin biochar. Pore diffusion within biochar particles was rate-limiting and controlled the timescale for redox equilibrium. Results suggest that redox-facile functional groups in biochar were distributed over a broad range of potentials. The ESC measured using dithionite indicates approximately 22% of the biochar's reversible ESC was accessible to G. metallireducens. We propose that reversible ESC may be regarded as a constant and quantifiable property of black carbon.


Asunto(s)
Carbón Orgánico/química , Electrones , Geobacter/química , Suelo/química , Madera/química , Oxidación-Reducción
9.
MethodsX ; 5: 1515-1520, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30519534

RESUMEN

Electron storage capacity (ESC) is a new and important property that determines the capacity of a black carbon to mediate abiotic and microbial electron transfer reactions in natural and engineered systems. It is necessary to develop accurate and reproducible methods to measure black carbon's ESC in order to understand its redox behavior and to predict its capacity to support redox transformation of contaminants in subsurface environments. In this study, we developed chemical methods that employed combinations of reductants and oxidants of different redox potentials - Ti(III) citrate or dithionite as reductant, and ferricyanide or dissolved O2 as oxidant - to measure the ESC of a wood-derived biochar. Pore diffusion within biochar particles was rate-limiting and controlled the timescale for redox equilibrium and ESC measurements. •The new methods can handle sample mass on the order of a gram•Sample pretreatment (e.g., oxidation via aeration) is necessary to produce consistent results•For a given reductant-oxidant pair, colorimetric (or potentiometric) measurements gave constant and reproducible ESC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA