Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Inorg Chem ; 59(10): 7012-7026, 2020 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-32339459

RESUMEN

In this study, zinc-gallium oxynitrides with a Zn:Ga mole ratio of 1:1 [(GaN)0.5(ZnO)0.5] were synthesized from a Zn/Ga/CO3 layered double hydroxide (LDH) precursor. The microstructure and photoactivity of the (GaN)0.5(ZnO)0.5 particles were tuned by adjusting the nitridation conditions of the LDH. It is revealed that the quantity of the LDH, or, equivalently, the partial pressure of the water during nitridation, plays a pivotal role in the defect structure of the obtained oxynitrides. A reduction in the quantity of the LDH precursor can effectively suppress the formation of defects including Ga(Zn)-O bonding, bulk anion vacancies, and surface-deposited Ga/ON···VGa complexes, leading to a better charge-separation efficiency for the photogenerated electron-hole pairs in the oxynitride. Furthermore, a suitable introduction of methane during nitridation would not only increase the crystallinity of the bulk materials but also enhance the density of the surface oxygen vacancy (VO), which would raise the charge-injection efficiency by working as an electron trap and a reaction site to form O2•-. O2•-, as well as photogenerated holes, have been proven to be the dominant active species for the photodegradation of phenol. 25CH4-ZnGaNO, with the lowest density of bulk defects and the highest density of surface VO, exhibited the best photoactivity under visible-light irradiation for the photodegradation of Rhodamine B and phenol. The obtained surface-VO-rich (GaN)0.5(ZnO)0.5 particles can be applied as a high-performance visible-light-driven photocatalyst in the photodegradation of organic pollutants.

2.
Inorg Chem ; 57(15): 9412-9424, 2018 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-30028597

RESUMEN

Methane-based nitridation was employed to produce wurtzite zinc-gallium oxynitride (ZnGaNO) photocatalyst particles using Zn/Ga/CO3 layered double hydroxides (LDHs) as precursor. Introduction of methane to nitridation would promote the formation of Zn-O bonding and suppress shallow acceptor complexes such as V(Zn)-Ga(Zn) and Ga-Oi in ZnGaNO particles. On the other hand, high flow rate of methane would induce breaking of Ga-N bonding and enhance surface deposition of metallic Ga atoms. After loading with Rh and RuO2, ZnGaNO particles had free electron density in an order of S50 > S20 > S90 > S0, which correlated well with their photocatalytic performance upon visible-light irradiation. The best performance of the loaded S50 was ascribed to the relatively flat surface band bending of the particle. Methane-based nitridation of Zn/Ga/CO3 LDHs would provide a new route to tune the surface chemistry of ZnGaNO and enhance the photocatalytic performance to its full potential.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA