Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
J Am Chem Soc ; 144(27): 12219-12228, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35729777

RESUMEN

Nanostructure-based functions are omnipresent in nature and essential for the diversity of life. Unlike small molecules, which are often inhibitors of enzymes or biomimetics with established methods of elucidation, we show that functions of nanoscale structures in cells are complex and can implicate system-level effects such as the regulation of energy and redox homeostasis. Herein, we design a platinum(II)-containing tripeptide that assembles into intracellular fibrillar nanostructures upon molecular rearrangement in the presence of endogenous H2O2. The formed nanostructures blocked metabolic functions, including aerobic glycolysis and oxidative phosphorylation, thereby shutting down ATP production. As a consequence, ATP-dependent actin formation and glucose metabolite-dependent histone deacetylase activity are downregulated. We demonstrate that assembly-driven nanomaterials offer a rich avenue to achieve broad-spectrum bioactivities that could provide new opportunities in drug discovery.


Asunto(s)
Nanoestructuras , Platino (Metal) , Adenosina Trifosfato/metabolismo , Metabolismo Energético , Homeostasis , Peróxido de Hidrógeno , Nanoestructuras/química
2.
Nanotechnology ; 29(40): 405301, 2018 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-30010616

RESUMEN

The assembly of metal nanoparticles (NPs) can regulate their plasmon resonance properties to pursue the best properties for applications. However, the controllable assembly of large-scale metal NP cluster arrays remains a significant challenge. This paper presents a novel strategy to prepare large-scale Au NP cluster arrays based on colloidal lithography and template-guided self-assembly technique. The NPs arrays are fabricated by introducing Au NPs onto the quaternized poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) brush templates via electrostatic interaction. The number of Au NPs in cluster can be arbitrarily tuned by changing the surface area of the polymer templates created by colloidal lithography, which resulted in tunable plasmonic properties. The prepared Au NP cluster arrays were used for surface enhanced Raman scattering (SERS) and the SERS properties of the Au NP cluster arrays were studied.

3.
ACS Appl Mater Interfaces ; 16(8): 9854-9867, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38375789

RESUMEN

Extracellular vesicles (EVs) possess favorable biocompatibility and immunological characteristics, making them optimal carriers for bioactive substances. In this study, an innovative hepatic-targeted vesicle system encapsulating with fucoxanthin (GA-LpEVs-FX) was successfully designed and used to alleviate nonalcoholic fatty liver disease. The formulation entails the self-assembly of EVs derived from Lactobacillus paracasei (LpEVs), modification with glycyrrhetinic acid (GA) via amide reaction offering the system liver-targeting capacity and loading fucoxanthin (FX) through sonication treatment. In vitro experiments demonstrated that GA-LpEVs-FX effectively mitigated hepatic lipid accumulation and attenuated reactive oxygen species-induced damage resulting lipid accumulation (p < 0.05). In vivo, GA-LpEVs-FX exhibited significant downregulation of lipogenesis-related proteins, namely, fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC1), and sterol regulatory element binding protein 1 (SREBP-1), subsequently ameliorating lipid metabolism disorders (p < 0.05), and the stability of GA-LpEVs-FX significantly improved compared to free FX. These findings establish a novel formulation for utilizing foodborne components for nonalcoholic fatty liver disease alleviation.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Xantófilas , Humanos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Biomimética , Hígado/metabolismo , Lípidos/farmacología , Metabolismo de los Lípidos
4.
Int J Biol Macromol ; 255: 128190, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37979738

RESUMEN

Adequate amounts of live probiotics reaching the gut are necessary to maintain host health. However, the harsh environment during processing, the low pH of human gastric acid, and the high concentration of bile salts in the gut can significantly reduce survivability of probiotics. In this work, we propose a simple Pickering emulsion gels strategy to encapsulate Lactobacillus plantarum Lp90 into oil droplets filled in calcium alginate gels to improve its viability under pasteurization and gastrointestinal conditions. The emulsion gels were stabilized by the soluble complexes of salmon by-product protein (SP) and sodium alginate (ALG), and the aqueous phase was solidified by the addition of calcium. The interaction between SP and ALG and the effect of ALG concentration on emulsifying ability and emulsion stability were studied. The results from optical imaging, nuclear magnetic resonance, and rheological properties showed that the stability and viscosity of the emulsions gradually increased with the increased ALG concentration, while the droplet size of the emulsions and the content of free water in the system decreased significantly. Especially when the concentration of ALG was 1 %, the emulsion system was stable under the environment of high temperature and high ionic strength, and the water holding capacity was the highest. Through pasteurization and gastrointestinal digestion experiments, it was found that the survival rate of probiotics encapsulated in emulsion gels was significantly higher than that encapsulated in emulsions or hydrogels, which benefited from the dual action of oil droplets and calcium alginate gels network. These results provide a new strategy for the processing of probiotics and the high-value utilization of marine fish by-products.


Asunto(s)
Alginatos , Probióticos , Animales , Humanos , Emulsiones/química , Alginatos/química , Salmón , Geles/química , Hidrogeles , Concentración de Iones de Hidrógeno , Agua/química
5.
J Agric Food Chem ; 71(48): 18842-18856, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37978937

RESUMEN

Oral administration of probiotic supplements can effectively regulate intestinal disorders. However, harsh gastrointestinal conditions greatly limit the bioavailability of probiotics. In this work, biomass-derived polysaccharide-protein hydrogels (Dex-sBSA hydrogels) were constructed as an oral probiotic delivery system. The hydrogel encapsulation significantly promoted the growth and proliferation of probiotics and protected them from gastric acid, bile salts, reactive oxygen species, and antibiotics. In vivo experiments demonstrated that the hydrogel encapsulation significantly enhanced the bioavailability of probiotics, of which the cell number in the intestine, colon, and cecum was 35 times, 8 times, and 203 times higher than the free one, respectively. Attributed to the superior ultrafast self-healing property, the Dex-sBSA hydrogel successfully prevented the probiotics from quick elimination and prolonged the retention time in the gut, providing great possibilities for colonization and proliferation. These results clearly indicate the great potential of the Dex-sBSA hydrogel as a superior oral delivery system for probiotics.


Asunto(s)
Hidrogeles , Probióticos , Colon , Polisacáridos , Ciego
6.
Food Chem ; 418: 135982, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36996645

RESUMEN

Nicotinamide mononucleotide (NMN) has been recognized as a promising bio-active compound in relieving aging-related mitochondrial dysfunction. Self-assembled nanoparticles were prepared based on interaction between ovalbumin (OVA) and fucoidan to improve the stability and bio-accessibility of NMN. The OVA-fucoidan nanoparticles (OFNPs) displayed outstanding thermal stability and entrapment ability of NMN. The reactive oxygen species (ROS) analysis and senescence-associated ß-galactosidase (SA-ß-gal) staining characterization indicated that NMN encapsulated by OFNPs could effectively alleviate the cellular senescence of d-galactose-induced senescent cells. In vivo Caenorhabitis elegans experiment demonstrated that NMN-loaded OFNPs caused less accumulation of lipofuscin and protected NMN from thermal damage. Compared with free NMN, the NMN-loaded OFNPs prolonged lifespan from 28 to 31 days, increased 26% reproductive ability, and improved 12% body length of Caenorhabitis elegans. The results indicated that the use of nanocarriers could be a good strategy to improve anti-oxidative stress and anti-aging ability of NMN.


Asunto(s)
Mononucleótido de Nicotinamida , Polisacáridos , NAD , Mononucleótido de Nicotinamida/farmacología , Ovalbúmina , Nanopartículas/química
7.
Food Funct ; 13(4): 2172-2183, 2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-35113104

RESUMEN

Gliadin, a kind of amphiphilic protein from wheat, has been widely used for stabilizing Pickering emulsions, which is easy to form colloidal particles. Herein, gliadin/propylene glycol alginate (PGA) colloidal particles (GPPs) with different gliadin/PGA ratios were developed and used as emulsifiers to prepare Pickering emulsions with an internal phase of 80% (v/v). The addition of PGA made the GPPs a tree-fruit-like morphology, increasing the particle size and changing the zeta-potential. Hydrogen bond and electrostatic interaction are the major forces between gliadin and PGA. The wettability of GPPs was improved significantly in the presence of PGA. The oil-water contact angle reached 89.5° when the gliadin/PGA ratio was 1 : 1. The emulsion could be maintained at room temperature for 6 months when the oil phase ratio (Φ) was 70%. The high stability of the Pickering emulsion could be attributed to the thin film formed by GPPs on the surface of oil droplets. The improved resistance of algal oil in emulsions against oxidation was proved as the induction time increased six times. In addition, the porous material prepared using GPPs-stabilized emulsion as the template displayed an oil absorption ability of 106.41 g g-1 and heavy metal adsorption ability of 202.71 mg g-1. Such performance implies that GPPs are highly efficient food-grade Pickering emulsifiers that may be applied in various fields.


Asunto(s)
Alginatos/química , Emulsionantes/química , Gliadina/química , Triticum , Alimentos Funcionales , Humanos , Nanopartículas
8.
Food Funct ; 13(7): 4023-4031, 2022 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-35315469

RESUMEN

Nanocarriers provide the possibility to overcome the low solubility, poor stability, and low bioavailability of functional factors. However, most nanocarriers do not directly participate in the corresponding effects of functional factors, such as treating inflammatory bowel disease but lack the means to control their size accurately. Herein, nanocarriers were prepared by a one-pot method, using food-grade antioxidant procyanidins, vanillin, and phycocyanin as raw materials. The strategy involved the Mannich reaction among the phenolic hydroxyl groups of procyanidins, the aldehyde groups of vanillin, and the amino groups of phycocyanin. The obtained nanocarriers displayed controllable sizes ranging from 130 to 750 nm, showing good antioxidant capacity in scavenging free radicals and were biocompatible to Caco-2 cells and RAW 264.7 macrophages. Nanocarriers also exhibited an inhibitory effect on cell damage induced by acrylamide and H2O2. Moreover, the designed nanocarriers could be used for delivering active ingredients such as lutein, which showed a uniform spherical distribution, high encapsulation efficiency, and good biocompatibility. This work provides a facile synthesis method to prepare food-grade nanocarriers with functional properties, which can be potentially used in the delivery of functional factors.


Asunto(s)
Nanopartículas , Proantocianidinas , Células CACO-2 , Portadores de Fármacos , Humanos , Peróxido de Hidrógeno , Tamaño de la Partícula , Ficocianina
9.
Adv Healthc Mater ; 11(2): e2101854, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34748685

RESUMEN

Uncontrolled amyloid-beta (Aß) fibrillation leads to the deposition of neurotoxic amyloid plaques and is associated with Alzheimer's disease. Inhibiting Aß monomer fibrillation and dissociation of the formed fibers is regarded as a promising therapeutic strategy. Here, amphiphilic polyphenylene dendrons (APDs) are demonstrated to interrupt Aß assembly and reduce Aß-cell interactions. Containing alternating negatively charged sulfonic acid and hydrophobic n-propyl peripheral groups, APDs bind to the secondary structure of the Aß aggregates, inhibiting fibrillation and disassemble the already formed Aß fibrils. APDs reveal vesicular cellular uptake in endosomes as well as cell compatibility for endothelial and neuronal cells, and significantly reduce Aß-induced neuron cytotoxicity in vitro. Moreover, they are transported into the brain and successfully cross the blood-brain barrier after systemic application in mice, indicating their high potential to inhibit Aß fibrillation in vivo, which can be beneficial for developing therapeutic strategy for Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Dendrímeros , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/química , Animales , Dendrímeros/farmacología , Ratones , Neuronas/metabolismo , Polímeros
10.
Environ Sci Pollut Res Int ; 28(44): 62572-62582, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34195947

RESUMEN

In this study, we investigated the removal efficiency of a broad-spectrum antimicrobial agent trimethoprim (TMP) in a UV-activated persulfate system (UV/PS). The pseudo-first-order reaction kinetic model based on the steady-state hypothesis was used to explain TMP degradation behavior in UV-activated persulfate system. Due to the low quantum yield and molar absorptivity of TMP at 254 nm, the direct photolysis of TMP was slower. Since the free radicals generated by adding H2O2 or PS to the system can react with TMP, the degradation rate was significantly accelerated, and[Formula: see text] played a dominant role in the UV/PS system. [Formula: see text] and [Formula: see text] were determined by the pseudo-first-order reaction kinetic model to be 6.02×109 and 3.88×109 M-1s-1, respectively. The values were consistent with competitive kinetic measurements. The pseudo-first-order reaction kinetics model can predict and explain the effect of PS concentration, natural organic matter, and chloride ion on the TMP degradation in the UV/PS system. The observed pseudo first-order rate constants for TMP degradation (kobs) increased with the persulfate concentration, but it significantly decreased in the presence of NOM and chloride. [Formula: see text] has no effect on the degradation of TMP, while [Formula: see text] promotes the degradation and [Formula: see text] inhibits the degradation. The common transition metal ion (such as Cu2+, Zn2+, and Co2+) in industrial wastewater has a synergistic effect on the TMP degradation in the UV/PS system, but excessive metal ions will lead to a decrease of the degradation rate.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Peróxido de Hidrógeno , Cinética , Oxidación-Reducción , Sulfatos , Trimetoprim , Rayos Ultravioleta , Agua , Contaminantes Químicos del Agua/análisis
11.
Int J Oral Sci ; 13(1): 27, 2021 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-34408132

RESUMEN

Nanomaterial-based drug sustainable release systems have been tentatively applied to bone regeneration. They, however, still face disadvantages of high toxicity, low biocompatibility, and low drug-load capacity. In view of the low toxicity and high biocompatibility of polymer nanomaterials and the excellent load capacity of hollow nanomaterials with high specific surface area, we evaluated the hollow polydopamine nanoparticles (HPDA NPs), in order to find an optimal system to effectively deliver the osteogenic drugs to improve treatment of bone defect. Data demonstrated that the HPDA NPs synthesized herein could efficiently load four types of osteogenic drugs and the drugs can effectively release from the HPDA NPs for a relatively longer time in vitro and in vivo with low toxicity and high biocompatibility. Results of qRT-PCR, ALP, and alizarin red S staining showed that drugs released from the HPDA NPs could promote osteogenic differentiation and proliferation of rat bone marrow mesenchymal stem cells (rBMSCs) in vitro. Image data from micro-CT and H&E staining showed that all four osteogenic drugs released from the HPDA NPs effectively promoted bone regeneration in the defect of tooth extraction fossa in vivo, especially tacrolimus. These results suggest that the HPDA NPs, the biodegradable hollow polymer nanoparticles with high drug load rate and sustainable release ability, have good prospect to treat the bone defect in future clinical practice.


Asunto(s)
Nanopartículas , Preparaciones Farmacéuticas , Animales , Regeneración Ósea , Indoles , Osteogénesis , Polímeros , Ratas
12.
ACS Nano ; 14(7): 9166-9175, 2020 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-32644775

RESUMEN

A superantiwetting surface based on low-aspect-ratio hierarchical cylinder arrays (HCAs) was successfully obtained on a silica substrate by colloidal lithography with photolithography. Colloidal lithography is a technique involving transfer of a pattern to a substrate by etching or exposure to a radiation source through a mask composed of a packed colloidal crystal, while photolithography is utilized by which a pattern is transferred photographically to a photoresist-coated substrate, and the substrate is subsequently etched. The surface provides an alternative approach to apply aligned micro-nano integrated structures with a relatively low aspect ratio in superantiwetting. The obtained HCAs successfully integrated micro- and nanoscale structures into one system, and the physical structure of the HCAs can be tuned by modulating the fabrication approach. Using a postmodification process, the underwater-oil wetting behavior of cylinder-array based surfaces can be easily modulated from the superoleophobic state (an oil contact angle (OCA) of 161°) to oleophilic state (an OCA of 19°). Moreover, the underwater-oil wettability can be reversibly transformed from the superoleophobic state (an OCA of approximately 153°) into the oleophilic state (an OCA of approximately 31°) by grafting stimuli-responsive polymer (PNIPAAm) brushes onto this specific hierarchical structure. Due to the temperature-responsive property, modifying the surface with PNIPAAm provides a possibility to control the oil wettability (repellent or sticky) by temperature, which will benefit the use of HCAs in oil-water separation and other application fields.

13.
Nanomaterials (Basel) ; 10(9)2020 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-32872678

RESUMEN

Water pollution has caused the ecosystem to be in a state of imbalance for a long time. It has become a major global ecological and environmental problem today. Solving the potential hidden dangers of pollutants and avoiding unauthorized access to resources has become the necessary condition and important task to ensure the sustainable development of human society. To solve such problems, this review summarizes the research progress of nanomaterials in the field of water aimed at the treatment of water pollution and the development and utilization of new energy. The paper also tries to seek scientific solutions to environmental degradation and to create better living environmental conditions from previously published cutting edge research. The main content in this review article includes four parts: advanced oxidation, catalytic adsorption, hydrogen, and oxygen production. Among a host of other things, this paper also summarizes the various ways by which composite nanomaterials have been combined for enhancing catalytic efficiency, reducing energy consumption, recycling, and ability to expand their scope of application. Hence, this paper provides a clear roadmap on the status, success, problems, and the way forward for future studies.

14.
Sci Rep ; 8(1): 16485, 2018 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-30405145

RESUMEN

Magnetic resonance imaging (MRI) has been proposed as a complimentary method to measure bone quality and assess fracture risk. However, manual segmentation of MR images of bone is time-consuming, limiting the use of MRI measurements in the clinical practice. The purpose of this paper is to present an automatic proximal femur segmentation method that is based on deep convolutional neural networks (CNNs). This study had institutional review board approval and written informed consent was obtained from all subjects. A dataset of volumetric structural MR images of the proximal femur from 86 subjects were manually-segmented by an expert. We performed experiments by training two different CNN architectures with multiple number of initial feature maps, layers and dilation rates, and tested their segmentation performance against the gold standard of manual segmentations using four-fold cross-validation. Automatic segmentation of the proximal femur using CNNs achieved a high dice similarity score of 0.95 ± 0.02 with precision = 0.95 ± 0.02, and recall = 0.95 ± 0.03. The high segmentation accuracy provided by CNNs has the potential to help bring the use of structural MRI measurements of bone quality into clinical practice for management of osteoporosis.


Asunto(s)
Fémur/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Redes Neurales de la Computación , Algoritmos , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Aprendizaje Automático , Mamografía , Curva ROC , Reproducibilidad de los Resultados
15.
Chempluschem ; 83(12): 1127-1134, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31950703

RESUMEN

Polypyrrole (PPy) hollow nanostructures continue to attract the interest researchers because of their good biocompatibility, high photothermal conversion efficiency, and excellent stability. The preparation of PPy hollow nanostructures by the hard templating method without complicated post-synthetic treatment and additional oxidizing agents remains a challenge. In this work, we report a facile and novel hard templating method to fabricate hollow PPy nanospindles in which MIL-88(Fe) serves as the template. Fe3+ centers in MIL-88(Fe) could induce the polymerization of pyrrole to construct the shell, and MIL-88(Fe) would be decomposed by solvent water. This method did not require any extra oxidizing agents and post-synthetic treatment. Hollow PPy nanospindles exhibit excellent photothermal and drug loading ability, and the therapy effect of cancer was significant. This method provides a new hard templating approach for the synthesis of polymer hollow nanostructures.

16.
Chem Commun (Camb) ; 52(65): 10064-7, 2016 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-27453963

RESUMEN

With the help of rhodamine B base (RBB), novel Pd nanospheres were synthesized by a facile one-step approach. Owing to their hierarchically porous characteristics, these nanospheres exhibited highly catalytic activity for HCOOH electrooxidation (∼1.84 times and 1.67 times higher than those of a commercial Pd/C catalyst for mass and specific activity, respectively).

17.
Chem Commun (Camb) ; 52(66): 10155-8, 2016 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-27461771

RESUMEN

A novel 'chelation competition induced polymerization' route was developed to construct hollow polydopamine nanocontainers with tailorable functionalities. The mechanism is systematically investigated and the nanocontainers constructed through this method show excellent chemo-thermo performance in vitro. This strategy is facile and is expected to be used for the construction of a series of hollow polymer nanostructures.

19.
ACS Appl Mater Interfaces ; 7(44): 24760-71, 2015 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-26497053

RESUMEN

This paper provides a facile and cost-efficient method to prepare single-strand DNA (ssDNA) nanocone arrays and hierarchical DNA patterns that were mediated by poly(2-hydroxyethyl methacrylate) (PHEMA) brush. The PHEMA brush nanocone arrays with different morphology and period were fabricated via colloidal lithography. The hierarchical structure was prepared through the combination of colloidal lithography and traditional photolithography. The DNA patterns were easily achieved via grafting the amino group modified ssDNA onto the side chain of polymer brush, and the anchored DNA maintained their reactivity. The as-prepared ssDNA nanocone arrays can be applied for target DNA sensing with the detection limit reaching 1.65 nM. Besides, with the help of introducing microfluidic ideology, the hierarchical-multiplex DNA patterns on the same substrate could be easily achieved with each kind of pattern possessing one kind of ssDNA, which are promising surfaces for the preparation of rapid, visible, and multiplex DNA sensors.


Asunto(s)
Técnicas Biosensibles/métodos , ADN/química , Polímeros/química , Coloides/química , ADN de Cadena Simple/química , Sustancias Macromoleculares/química , Microfluídica , Microscopía de Fuerza Atómica , Microscopía Electrónica de Rastreo , Microscopía Fluorescente , Nanopartículas/química , Análisis de Secuencia por Matrices de Oligonucleótidos , Polihidroxietil Metacrilato/química , Silicio/química , Propiedades de Superficie
20.
Nanoscale ; 6(9): 4676-82, 2014 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-24647626

RESUMEN

Carbon dots (CDs) are novel fluorescent materials with low toxicity and good biocompatibility. Herein, the collisional/dynamic and photoluminescence (PL) center destruction quenching behaviors of a novel type of CDs were investigated. Moreover, the quenching behaviors of the CDs were exploited in applications. Firstly, dynamic PL quenching was achieved by Fe(3+) ions, which was proved by the Stern-Volmer equation, temperature dependent quenching and fluorescence lifetime measurements. Furthermore, a hemin sensor based on the Fe(3+)/CDs system was achieved. Secondly, quenching induced by PL center destruction was caused by hydroxyl radicals (˙OH), which were produced by high power UV light or the H2O2/Fe(2+) system; thus an H2O2 sensor with a low detection limit (0.9 ppb) was realized. Finally, we assumed that the CDs are really composed of cross-linked molecular clusters, and that the PL centers of the as prepared CDs are certain molecular/chemical groups.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA