Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nano Lett ; 21(20): 8872-8879, 2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34632782

RESUMEN

The downscaling of nonlinear optical devices is significantly hindered by the inherently weak nonlinearity in regular materials. Here, we report a giant third-harmonic generation discovered in epitaxial thin films of V-VI chalcogenide topological insulators. Using a tailored substrate and capping layer, a single reflection from a 13 nm film can produce a nonlinear conversion efficiency of nearly 0.01%, a performance that rivals micron-scale waveguides made from conventional materials or metasurfaces with far more complex structures. Such strong nonlinear optical emission, absent from the topologically trivial member in the same compound family, is found to be generated by the same bulk band characteristics that are responsible for producing the band inversion and the nontrivial topological ordering. This finding reveals the possibility of obtaining superior optical nonlinearity by examining the large pool of newly discovered topological materials with similar band characteristics.

2.
Nano Lett ; 20(10): 7760-7766, 2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-33016706

RESUMEN

The interactions between light and plasmonic charge oscillations in conducting materials are important venues for realizing nanoscale light manipulations. Conventional metal-based plasmonic devices lack tunability due to the fixed material permittivities. Here, we show that reconfigurable plasmonic functionalities can be achieved using the spatially controlled phase transitions in strongly correlated oxide films. The experimental results discussed here are enabled by a recently developed scanning probe-based technique that allows a nonvolatile, monoclinic-metal VO2 phase to be reversibly patterned at the nanoscale in ambient conditions. Using this technique, rewritable waveguides, spatially modulated plasmonic resonators, and reconfigurable wire-grid polarizers are successfully demonstrated. These structures, effectively controlling infrared lights through spatially confined mobile carriers, showcase a great potential for building programmable nanoplasmonic devices on correlated oxide platforms.

3.
Opt Express ; 27(1): 121-131, 2019 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-30645353

RESUMEN

We propose a method for generation of tunable three-dimensional (3D) helical lattices with varying helix pitch. In order to change only the lattice helix pitch, a periodically varying phase along the propagation direction is added to the central beam - one of the interference beams for lattice construction. The phase periodicity determines the helix pitch, which can be reconfigured at ease. Furthermore, a helical lattice structure with an interface (domain wall) is also achieved by changing the phase structure of the lateral beams, leading to opposite rotating direction (helicity) on different sides of the interface. When a Gaussian beam is used to probe the bulk lattice, it can evolve into a spiral beam with its helicity varying in accordance with that of the lattice. Probing along the interface with two dipole-like optical beams leads to unusual propagation dynamics, depending on the phase and size of the two beams. This approach could be further explored for studies of nonlinear interface solitons and topological interface states. In addition, the helical lattices may find applications in dynamical multi-beam optical tweezers.

4.
Opt Express ; 27(4): 5884-5892, 2019 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-30876183

RESUMEN

By using transmission-mode, scattering-type scanning near-field optical microscopy, we characterize the mid-infrared near-field properties of a Yagi-Uda antenna in the emission mode. The underlying near-field properties, including the near-field dipole-dipole coupling between antenna elements, are clearly observed. Moreover, even though most of the radiation energy is emitted into the substrate, by adopting two detector antennas, we managed to verify the unidirectionality and frequency-selectivity of the Yagi-Uda antenna in the air side. All the experimental results presented in this work are in good qualitative agreement with our numerical simulations. Our work on the Yagi-Uda antenna could help lead to novel methods for mid-infrared material analysis and bio-sensing. It should also be applicable in all-optical processing like radiation routers or a chromatic discriminator.

5.
Nanotechnology ; 30(50): 505201, 2019 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-31491784

RESUMEN

Because of extreme three-dimensional field confinement and easy electrically tunability, plasmons in graphene nanostructures are promising candidates for many applications, such as biosensing, photodetectors and modulators. However, up to now, graphene plasmons have been explored mostly on substrates. Scatterers, corrugations and dopants induced by substrates not only add damping to plasmons but also obscure the intrinsic electronic properties of graphene. In this work, the near-field response of surface plasmons of suspended graphene circular resonators is studied with the scattering-type scanning near-field optical microscopy under different excitation wavelengths, λ = 10.653 and 10.22 µm, respectively. Fundamental and higher order breathing plasmon modes are revealed in real-space with the Fermi energy of graphene of only 0.132 eV. Moreover, the direct experimental evidence on near-field electric tuning in suspended graphene resonators is demonstrated by using back-gate tuning. Our work not only provides a foundation to truly understand the properties of electrons inside pure graphene, but shines light on the applications in optoelectronic devices with suspended two-dimensional materials.

6.
Nanotechnology ; 29(38): 385205, 2018 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-29968574

RESUMEN

Plasmon nanoresonators in graphene have many applications in biosensing, photodetectors and modulators. As a result, an efficient and precise patterning technique for graphene is required. Helium ion lithography (HIL) emerges as a promising tool for direct writing fabrication because it owns improved fabrication precision compared to electron beam lithography and conventional gallium focused ion beam technique. In this paper, utilizing HIL, a set of graphene triangles are patterned and excellent plasmon response is detected. Particularly, the evolution of breathing mode in these structures is unveiled by scattering-type scanning near-field optical microscopy. Besides, the plasmon response of graphene structures can be efficiently tuned by adjusting the irradiated ion dose during the etching process, which can be explained by the phenomenal simulation model. Our work demonstrates that HIL is a feasible way for precise plasmonic nanostructure fabrication, and can be applied to graphene plasmon control at the nanoscale as well.

7.
Opt Express ; 25(19): 23070-23081, 2017 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-29041611

RESUMEN

Spontaneous emission control of an optical emitter is critical for many applications, such as in the fields of sensing, integrated photonics and quantum optics. Integrating optical emitters with a mechanical system can provide an avenue for strain sensors as well. Here, the dynamic spontaneous emission modification of an emitter coupled to graphene by uniaxial strain is demonstrated. Our results show that the emission rate can be controlled by tuning the strain of graphene, which depends on the polarized orientation of the emitter. More specifically, the decay rate can be enhanced for several times if the emitter is polarized perpendicular to graphene under strain. Azimuthal angle dependent oscillation of decay rate exists for the emitter polarized parallel to the graphene. Moreover, the controllable decay of the emitter comes from the anisotropic plasmons excitation in strained graphene, which is verified by the corresponding isofrequency contours of plasmons. The strain engineering provides a new platform for dynamic spontaneous emission modulation of emitters coupled with graphene, which opens up intriguing possibilities for the design of strain sensors and quantum devices.

8.
Opt Express ; 25(5): 4680-4687, 2017 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-28380739

RESUMEN

Controllable manipulation of propagating surface plasmon polaritons is critical in plasmonics and important for nanophotonic applications. Here, we demonstrate theoretically that graphene plasmons (GPs) can be unidirectionally excited in an Au-graphene composite structure by a linearly polarized optical wave at the wavelength of 10.2 µm. The unidirectional ratio can reach as large as 900 with the incidence angle at 37.7° off normal, which is obtained by the angular spectrum of GPs. Moreover, the physical mechanism behind the unidirectional excitation is revealed to be the interference between anti-symmetric and symmetric amplitude distributions of GPs, which are induced by the gold rod antenna under the normal and grazing illuminations, respectively.

9.
Opt Express ; 24(6): 5784-93, 2016 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-27136776

RESUMEN

General actively tunable near-field plasmon-induced transparency (PIT) systems based on couplings between localized plasmon resonances of graphene nanostructures not only suffer from interantenna separations of smaller than 20 nm, but also lack switchable effect about the transparency window. Here, the performance of an active PIT system based on graphene grating-sheet with near-field coupling distance of more than 100 nm is investigated in mid-infrared. The transparency window in spectrum is analyzed objectively and proved to be more likely stemmed from Aulter-Townes splitting. The proposed system exhibits flexible tunability in slow-light and electro-optical switches, promising for practical active photonic devices.

10.
Opt Express ; 24(4): 3849-57, 2016 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-26907038

RESUMEN

Enhancements up to four orders of magnitude for electric intensity and three orders of magnitude for magnetic intensity are realized in a novel 2D L-shaped nanocavity. This structure makes full use of the dimension confinement, cavity resonance and tip enhancement to increase the electromagnetic intensity. An impedance matching model is developed to design this cavity by regarding the cavity as a load impedance where electromagnetic fields are maximally enhanced when maximum electromagnetic energy is delivered to the load impedance. Our L-shaped nanocavity promises a variety of useful functionalities in sensing, nonlinear spectroscopy and signal processing.

11.
Opt Express ; 23(19): 24407-15, 2015 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-26406645

RESUMEN

Superscattering has been proposed to enhance the total scattering cross-section significantly. Here we design three kinds of super-scatterers with maximum total scattering cross-sections at three primary colors. They are utilized to construct random systems, whose random lasing properties are analyzed. We find that the lasing thresholds are reduced by two orders of magnitude at these trichromatic wavelengths in respect to other wavelengths or compared to random systems with conventional scatterers.

12.
Opt Express ; 19(19): 18713-20, 2011 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-21935241

RESUMEN

Except for heating losses in metal, propagating plasmons also suffer a lot from radiation losses. In this paper, electron beams are proposed as a way to excite higher-order, multipolar plasmons, which would otherwise not be excited by light, as a way to reduce radiation losses. Specifically, electron excited guided plasmons in a coupled nanoparticle chain and a symmetrical four-wire waveguide are separately discussed. In the coupled nanoparticle chain, the plasmon mode formed by quadrupolar polarized particles with low radiation is efficiently coupled by electron beams. Meanwhile, in the four-wire waveguide, the excited plasmons with zero momentum in the cross-section of each wire possess longer propagating distance than other higher-order plasmons.

13.
Nanoscale Adv ; 3(14): 4286-4291, 2021 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-36132839

RESUMEN

Plasmon resonances with high-quality are of great importance in light emission control and light-matter interactions. Nevertheless, inherent ohmic and radiative losses usually hinder the plasmon performance of metallic nanostructures, especially for aluminum (Al). Here we demonstrate a Bragg grating decorated nanodisk to narrow the linewidth of breathing plasmon resonances compared with a commensurate nanodisk. Two kinds of plasmon resonant modes and the corresponding mode patterns are investigated in cathodoluminescence (CL) depending on the different electron bombardment positions, and the experimental results agree well with full wave electromagnetic simulations. Linewidth narrowing can be clearly understood using an approximated magnetic dipole model. Our results suggest a feasible mechanism for linewidth narrowing of plasmon resonances as well as pave the way for in-depth analysis and potential applications of Al plasmon systems.

14.
Nanoscale ; 12(5): 3112-3120, 2020 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-31965128

RESUMEN

Strong coupling originating from excitons of quantum dots and plasmons in nanocavities can be realized at room temperature due to the large electromagnetic field enhancement of plasmons, offering building blocks for quantum information systems, ultralow-power switches and lasers. However, most of the current strong coupling effects were realized by the interaction between excitons and far-field light excited bright plasmon modes in the visible range. Beyond that, there is still a lack of direct imaging of polariton modes at the nanoscale. In this work, by using cathodoluminescence, ultrastrong coupling with Rabi splitting exceeding 1 eV between bonding breathing plasmons of aluminum (Al) metal-insulator-metal (MIM) cavities and excited states of CdZnS/ZnS quantum dots was observed in the near-ultraviolet (UV) spectrum. Further, the hybridization of the QDs excitons and bonding breathing plasmonic modes is verified by deep-subwavelength images of polaritonic modes in real-space. Analytic analysis based on the coupled oscillator model and full-wave electromagnetic simulations is consistent with our experimental results. Our work not only indicates the great potential of electron excited plasmon modes for strong coupling applications, but also extends the polaritonic frequency to the UV range with Al nanocavities.

15.
Light Sci Appl ; 8: 31, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30886708

RESUMEN

Osmotic conditions play an important role in the cell properties of human red blood cells (RBCs), which are crucial for the pathological analysis of some blood diseases such as malaria. Over the past decades, numerous efforts have mainly focused on the study of the RBC biomechanical properties that arise from the unique deformability of erythrocytes. Here, we demonstrate nonlinear optical effects from human RBCs suspended in different osmotic solutions. Specifically, we observe self-trapping and scattering-resistant nonlinear propagation of a laser beam through RBC suspensions under all three osmotic conditions, where the strength of the optical nonlinearity increases with osmotic pressure on the cells. This tunable nonlinearity is attributed to optical forces, particularly the forward-scattering and gradient forces. Interestingly, in aged blood samples (with lysed cells), a notably different nonlinear behavior is observed due to the presence of free hemoglobin. We use a theoretical model with an optical force-mediated nonlocal nonlinearity to explain the experimental observations. Our work on light self-guiding through scattering bio-soft-matter may introduce new photonic tools for noninvasive biomedical imaging and medical diagnosis.

16.
Nanoscale ; 10(47): 22357-22361, 2018 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-30474670

RESUMEN

Exact understanding of the plasmon response of aluminum (Al) nanostructures in deep subwavelengths is critical for the design of Al based plasmonic applications, such as the emission control of quantum dots and surface-enhanced resonance Raman scattering in the ultraviolet (UV) range. Here, the plasmonic properties of open triangle cavities patterned by a focused ion beam in single-crystal bulk Al were explored using cathodoluminescence. The resonant modes were determined by experimental spectra and deep subwavelength real-space mode patterns ranging from the visible to the UV, which agreed well with full-wave electromagnetic simulations. The dispersion relation of the cavity modes was consistent with that at the interface between Al and vacuum, showing strong electromagnetic field confinement in the cavities. Open Al triangle cavities provided room for the interaction between optical emitters and confined electromagnetic fields, paving the way for plasmonic devices for a variety of applications, such as plasmonic light-emitting devices or nanolasers in the UV range.

17.
Sci Rep ; 7(1): 1402, 2017 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-28469273

RESUMEN

Spectral resolving and imaging surface plasmon modes in noble metal nanostructures are important for applications in nanophotonics. Here, we use cathodoluminescence (CL) spectroscopy to excite and probe quasi-dark plasmon modes of Au nanoring cavities. Numerical simulations of both the spectra and the electromagnetic field distribution are carried out by using boundary element method. Good agreement between the experimental and simulated results is obtained. Particularly, CL is shown as an efficient method to probe quadrupole modes, which is difficult for traditional optical means. Moreover, a high Purcell factor in excess of 100 is obtained for the dark quadrupole modes in gold ring cavities. Our work provides an efficient way to explore the initial nature of surface plasmon modes in metal nanostructures.

18.
Adv Mater ; 29(30)2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28605072

RESUMEN

Graphene plasmons provide great opportunities in light-matter interactions benefiting from the extreme confinement and electrical tunability. Structured graphene cavities possess enhanced confinements in 3D and steerable plasmon resonances, potential in applications for sensing and emission control at the nanoscale. Besides graphene boundaries obtained by mask lithography, graphene defects engineered by ion beams have shown efficient plasmon reflections. In this paper, near-field responses of structured graphene achieved by ion beam direct-writing are investigated. Graphene nanoresonators are fabricated easily and precisely with a spatial resolution better than 30 nm. Breathing modes are observed in graphene disks. The amorphous carbons around weaken the response of edge modes in the resonators, but meanwhile render the isolated resonators in-plane electrical connections, where near-fields are proved gate-tunable. The realization of gate-tunable near-fields of graphene 2D resonators opens up tunable near-field couplings with matters. Moreover, graphene nonconcentric rings with engineered near-field confinement distributions are demonstrated, where the quadrupole plasmon modes are excited. Near-field mappings reveal concentrations at the scale of 3.8×10-4λ02 within certain zones which can be engineered. The realization of electrically tunable graphene nanoresonators by ion beam direct-writing is promising for active manipulation of emission and sensing at the nanoscale.

19.
Sci Rep ; 6: 39125, 2016 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-27995956

RESUMEN

To achieve extreme electromagnetic enhancement, we propose a plasmonic Tamm states (PTSs) configuration based on the metal-insulator-metal Bragg reflector, which is realized by periodically modulating the width of the insulator. Both the thick (2D) and thin (3D) structures are discussed. Through optimization performed by the impedance-based transfer matrix method and the finite difference time domain method, we find that both the electric field and magnetic field intensities can be increased by three orders of magnitude. The field-enhancement inside the PTSs configuration is not limited to extremely sharp waveguide terminal, which can greatly reduce processing difficulties.

20.
Sci Rep ; 6: 26796, 2016 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-27228949

RESUMEN

Tunable band-stop filters based on graphene with periodically modulated chemical potentials are proposed. Periodic graphene can be considered as a plasmonic crystal. Its energy band diagram is analyzed, which clearly shows a blue shift of the forbidden band with increasing chemical potential. Structural design and optimization are performed by an effective-index-based transfer matrix method, which is confirmed by numerical simulations. The center frequency of the filter can be tuned in a range from 37 to 53 THz based on the electrical tunability of graphene, while the modulation depth (-26 dB) and the bandwidth (3.1 THz) of the filter remain unchanged. Specifically, the bandwidth and modulation depth of the filters can be flexibly preset by adjusting the chemical potential ratio and the period number. The length of the filter (~750 nm) is only 1/9 of the operating wavelength in vacuum, which makes the filter a good choice for compact on-chip applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA