Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Rev Lett ; 130(9): 095101, 2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36930918

RESUMEN

We report on charge state measurements of laser-accelerated carbon ions in the energy range of several MeV penetrating a dense partially ionized plasma. The plasma was generated by irradiation of a foam target with laser-induced hohlraum radiation in the soft x-ray regime. We use the tricellulose acetate (C_{9}H_{16}O_{8}) foam of 2 mg/cm^{3} density and 1 mm interaction length as target material. This kind of plasma is advantageous for high-precision measurements, due to good uniformity and long lifetime compared to the ion pulse length and the interaction duration. We diagnose the plasma parameters to be T_{e}=17 eV and n_{e}=4×10^{20} cm^{-3}. We observe the average charge states passing through the plasma to be higher than those predicted by the commonly used semiempirical formula. Through solving the rate equations, we attribute the enhancement to the target density effects, which will increase the ionization rates on one hand and reduce the electron capture rates on the other hand. The underlying physics is actually the balancing of the lifetime of excited states versus the collisional frequency. In previous measurement with partially ionized plasma from gas discharge and z pinch to laser direct irradiation, no target density effects were ever demonstrated. For the first time, we are able to experimentally prove that target density effects start to play a significant role in plasma near the critical density of Nd-glass laser radiation. The finding is important for heavy ion beam driven high-energy-density physics and fast ignitions. The method provides a new approach to precisely address the beam-plasma interaction issues with high-intensity short-pulse lasers in dense plasma regimes.

2.
Hepatol Res ; 48(3): E275-E282, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28888081

RESUMEN

AIM: We aimed to investigate sleep quality, mild hepatic encephalopathy, anxiety, and depression in patients with hepatitis B cirrhosis by using a variety of scales and questionnaires. METHOD: A cohort of 341 patients with hepatitis B liver cirrhosis were categorized by Child-Pugh grading (A, B, and C) in this cross-sectional study. Pittsburgh Sleep Quality Index (PSQI), Number Connection Test-A (NCT-A), and Hospital Anxiety and Depression (HAD) evaluated the questionnaires and statistically analyzed the intrinsic correlation. The control group included 50 healthy individuals. Of 341 patients, 213 had a PSQI index >5 points. RESULTS: The PSQI, NCT-A, anxiety scale (HAD [a]), and depression scale (HAD [d]) of the patients were significantly different. The NCT-A-positive patients revealed 214 cases of possible minimal hepatic encephalopathy (MHE) during a preliminary screening of patients. The PSQI score of NCT-A-positive patients was significantly elevated compared to NCT-A-negative patients (P < 0.001). HAD (a) and HAD (d) were significantly different between the NCT-A-positive and NCT-A-negative groups (P = 0.002 and P = 0.006, respectively). Univariate Pearson's correlation analysis found that NCT-A and HAD (a) were positively correlated with PSQI (P < 0.001 and P = 0.045, respectively); however, Child-Pugh score and HAD (d) were not correlated with PSQI (P = 0.061 and P = 0.059, respectively). CONCLUSION: These results indicated that patients with hepatitis B liver cirrhosis have a disturbed sleep, which might be an MHE symptom, further causing considerable anxiety. Thus, the evaluation of sleep quality and psychological state of patients with hepatitis B liver cirrhosis necessitates further investigation to guide positive intervention.

3.
Phys Chem Chem Phys ; 19(6): 4288-4296, 2017 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-28116369

RESUMEN

Doping and varying pump laser parameters are the widely applied technological processes for tuning spectra to yield desirable luminescence properties and functions. For micro/nanocrystalline materials, doping is of fundamental importance in modifying electronic properties, modulating magnetism, as well as tuning the red-to-green luminescence ratio. Here we describe a tunable upconversion (UC) emission process in single NaYF4:Yb/Er microtubes excitated with a focused laser. We show that the emission colours from single NaYF4:Yb/Er microtubes can be rationally tuned in the red-to-green luminescence ratio and dynamics process by elevating Yb3+ ion concentration or pump power density. The underlying mechanism of spectral tuning is explored by using the power dependent UC luminescence, downconversion spectra and the temporal evolutions of UC emission from a series of single NaYF4:Yb/Er microtubes. A mechanism of the red luminescence enhancement based on mediating electronic energy transfer channels by inducing three-photon processes is proposed for single microtubes. The natural decays of the luminescence levels are modified in the UC process relative to downconversion, which could be interpreted by using rate equations. Here, an insight into UC processes by use of unconventional focused experimental and theoretical techniques indicates the bidirectional feature of the electron transition of the interexcited-state by linear decays and UC processes via controlling external experimental parameters.

4.
Prep Biochem Biotechnol ; 47(3): 254-260, 2017 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-27558450

RESUMEN

Since both ethanol and butanol fermentations are urgently developed processes with the biofuel-demand increasing, performance comparison of aerobic ethanol fermentation and anerobic butanol fermentation in a continuous and closed-circulating fermentation (CCCF) system was necessary to achieve their fermentation characteristics and further optimize the fermentation process. Fermentation and pervaporation parameters including the average cell concentration, glucose consumption rate, cumulated production concentration, product flux, and separation factor of ethanol fermentation were 11.45 g/L, 3.70 g/L/h, 655.83 g/L, 378.5 g/m2/h, and 4.83, respectively, the corresponding parameters of butanol fermentation were 2.19 g/L, 0.61 g/L/h, 28.03 g/L, 58.56 g/m2/h, and 10.62, respectively. Profiles of fermentation and pervaporation parameters indicated that the intensity and efficiency of ethanol fermentation was higher than butanol fermentation, but the stability of butanol fermentation was superior to ethanol fermentation. Although the two fermentation processes had different features, the performance indicated the application prospect of both ethanol and butanol production by the CCCF system.


Asunto(s)
Reactores Biológicos/microbiología , Butanoles/metabolismo , Clostridium acetobutylicum/metabolismo , Etanol/metabolismo , Fermentación , Levaduras/metabolismo , Clostridium acetobutylicum/crecimiento & desarrollo , Glucosa/metabolismo , Membranas Artificiales , Levaduras/crecimiento & desarrollo
5.
Opt Lett ; 40(15): 3580-3, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-26258362

RESUMEN

We demonstrate a versatile approach to fine-tuning the ratio of blue to near-infrared emission intensity from Tm3+ ions in LaF3 nanocrystals by adjusting the pulse widths and excitation wavelengths of red laser beams. The mechanism of color-tunable Tm3+ emission by pulse widths is explored, and a mechanism based on promoting the population of some luminescence levels and cutting off the population of others by suitably adjusting pulse duration is proposed. The underlying reason of excitation wavelength-modulated emission is ascribed to tuning absorption probability ratio of ground state absorption to excited state absorption by tuning the matching degree between the energies of excitation wavelength and ground (excited) state absorption of Tm3+. The ability of our LaF3:Tm3+ nanocrystals to emit variable emissions on demand in response to pulse width and excitation wavelength provides keen insights into controlling the population processes of luminescent levels and offers a versatile approach for tuning the spectral output.

6.
Mol Biotechnol ; 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38771422

RESUMEN

The occurrence of osteoarthritis in the knee joint is regulated by a complex network, and there is currently no specific therapeutic drug available. Functional exercises and treatments targeting inflammatory factors have shown the potential to alleviate knee osteoarthritis to some extent. Therefore, the aim of this study was to assess the intra-articular injection (IAI) of autologous platelet-rich plasma (PRP) combined with physical therapy (PT) in treating knee osteoarthritis. A total of 128 patients with knee osteoarthritis were included in the study, including 64 males and 64 females. A total of 128 patients were divided into sodium hyaluronate group (HA group), PRP group, PRP + PT group, and PT group, with 32 cases in each group. Visual analog scale (VAS), Western Ontario and McMaster University Osteoarthritis Index (WOMAC), and Japanese Orthopaedic Association (JOA) were employed to evaluate the recovery of patients from pain and osteoarthritis. Color Doppler ultrasound imaging technology was utilized to assess joint effusion, synovial membrane thickness, and articular cartilage thickness in patients with knee osteoarthritis. Enzyme-linked immunosorbent assay (ELISA) was employed to detect the levels of interleukin-1ß (IL-1ß), transforming growth factor-ß1 (TGF-ß1), and matrix metallopeptidase 3 (MMP-3) in the synovial fluid. Compared to the HA group, the PT group, PRP group, and PRP combined with PT (PRP + PT) group all showed reduced VAS and WOMAC scores, increased JOA scores, decreased joint effusion, synovial membrane thickness, and articular cartilage thickness in the knee joint. Additionally, levels of IL-1ß and MMP-3 in the synovial fluid decreased, while TGF-ß1 levels increased (P < 0.05). Compared with the PT group, the VAS and WOMAC scores of the knee joint in the PRP group decreased, JOA scores increased, joint effusion, synovial thickness, and articular cartilage thickness decreased, but there was no statistically significant difference (P > 0.05), and the PRP + PT group showed decreased VAS and WOMAC scores, increased JOA scores, reduced joint effusion, synovial membrane thickness, and articular cartilage thickness in the knee joint. Moreover, levels of IL-1ß and MMP-3 in the synovial fluid decreased, while TGF-ß1 levels increased (P < 0.05). No severe adverse reactions were observed in any of the four groups, but the pain rate in the PRP + TP group was significantly lower than PT group, PRP group, and PRP + PT group (P < 0.05). The efficacy of intra-articular injection of PRP combined with exercise therapy in the treatment of knee osteoarthritis is superior to that of single interventions such as simple interventions of HA, PRP injection, and PT. Furthermore, intra-articular injection of PRP combined with exercise therapy demonstrates enhanced effectiveness in improving the inflammatory levels associated with knee osteoarthritis and facilitating the rehabilitation process.

7.
Pain Physician ; 27(1): E1-E15, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38285024

RESUMEN

BACKGROUND: Calcified lumbar disc herniation (CLDH) is a subtype characterized by calcification, leading to increased surgical complexity. Percutaneous endoscopic lumbar discectomy (PELD) is a minimally invasive technique, but its effectiveness and complications in CLDH patients remain to be fully evaluated. OBJECTIVE: To assess the effectiveness and complications of PELD in treating CLDH patients. STUDY DESIGN: A retrospective cohort study combined with a systematic review and meta-analysis. SETTING: Department of Pain Medicine, an affiliated hospital of a university. METHODS: Data from patients who underwent PELD in our department between March 2020 and May 2021 were collected. Forty CLDH patients were included in the study group, and equally matched cases with uncalcified lumbar disc herniation (UCLDH) served as controls. A systematic search was conducted on October 5, 2022, using EMBASE, PubMed, Cochrane Library, the China Biology Medicine disk, the China National Knowledge Infrastructure, and the Wanfang databases, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A random-effects model was used to calculate pooled results. RESULTS: Eighty patients were included in the retrospective cohort, and 41 studies were included in the meta-analysis. Both the retrospective cohort and meta-analysis consistently showed a significant decrease in visual analog scale (VAS) and Oswestry Disability Index (ODI) scores in the CLDH group after the operation. In the retrospective cohort, the excellent or good rate according to the MacNab classification was 85%, with no reported complications. The meta-analysis revealed a pooled excellent or good rate of 91.8% and a low complication rate of 2.9%. Combining the findings from our retrospective cohort and meta-analysis, we observed that the CLDH group had longer operation times and slightly higher postoperative ODI scores compared to the UCLDH group. LIMITATIONS: Small sample size and lack of long-term follow-up in the retrospective cohort, as well as limited inclusion of comparative studies in the meta-analysis. CONCLUSION: PELD is an effective and safe treatment option for CLDH patients. In comparison to UCLDH patients, CLDH patients may experience longer operation times and slightly slower functional recovery than those with UCLDH.


Asunto(s)
Discectomía Percutánea , Desplazamiento del Disco Intervertebral , Humanos , Desplazamiento del Disco Intervertebral/cirugía , Vértebras Lumbares/cirugía , Estudios Retrospectivos
8.
Phys Med Biol ; 69(2)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38064745

RESUMEN

The FLASH effect of carbon ion therapy has recently attracted significant attention from the scientific community. However, the radiobiological mechanism of the effect and the exact therapeutic conditions are still under investigation. Therefore, the dosimetry accuracy is critical for testing hypotheses about the effect and quantifying FLASH Radiotherapy. In this paper, the FLASH ionization chamber at low-pressure was designed, and its dose rate dependence was verified with the Faraday cup. In addition, the dose response was tested under the air pressure of the ionization chamber of 10 mbar, 80 mbar and 845 mbar, respectively. The results showed that when the pressure was 10 mbar, the dose linearity was verified and calibrated at the dose rate of ∼50 Gy s-1, and the residuals were less than 2%. In conclusion, the FLASH ionization chamber is a promising instrument for online dose monitoring.


Asunto(s)
Radioterapia de Iones Pesados , Radiometría , Dosificación Radioterapéutica , Radiometría/métodos
9.
RSC Adv ; 13(33): 22945-22957, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37529363

RESUMEN

Photocatalytic reactions convert solar energy into chemical energy through a clean and green reaction process. Photocatalytic technology based on semiconductor materials provides us with a new idea in energy utilization and environmental governance. It was found that vanadium pentoxide (V2O5) has a narrow band gap, wide response range in the visible region, high oxygen density in the V2O5 lattice, high oxidation state of V5+, small energy requirement, and superior catalytic activity in partial oxidation. Therefore, the utilization rate of sunlight and photocatalytic oxidation can be greatly improved using V2O5 materials. However, the narrow band gap of V2O5 also makes it easier for the photogenerated electrons and holes to recombine in the excited state, and the stored energy is instantly consumed by carrier recombination. Therefore, how to promote the carrier separation of V2O5 and improve the photocatalytic efficiency are the key problems to be solved. Herein, several methods to improve the photocatalytic performance of V2O5 are reviewed, including metallic ion doping, non-metallic ion doping, semiconductor recombination, and noble metal deposition. Finally, it is suggested that future research directions should focus on a variety of modification methods simultaneously to promote photocatalytic efficiency and lower the cost, which will enable V2O5 to have a broad development prospect in the field of photocatalysis.

10.
Int J Radiat Biol ; 99(5): 779-790, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36731457

RESUMEN

BACKGROUND: Probiotics such as Lactobacillus could modulate the intestinal microbiota and have been considered as an effective strategy for ameliorating colon carcinoma. Nevertheless, its efficiency remains the biggest challenge. METHODS: We investigated the therapeutic efficacy of Lactobacillus reuteri JMR-01 adjuvant 12C6+ irradiation on CT-26 syngeneic mouse models. Meanwhile, intestinal flora and innate immunity were examined to outline mechanisms. RESULTS: Anti-proliferation effect of live probiotic combined with inactivated probiotic JMR-01 (LP + IP) on CT-26 reached a maximum of 39.55% among other experiment groups at 24 h when the ratio of cell to CFU was 1:1 in vitro. These activities have been fully validated in vivo, tumor-bearing mice treated by 12C6+ irradiation combining with living and inactivated probiotics JMR-01 (IR + LP + IP) for 50-day held the highest survival rate (71.4%) and complete remission rate (14.3%). We also demonstrated significant fluctuation in gut microbiota, including the decreased abundance of Bacteroides fragilis and Clostridium perfringens related to tumorigenesis and development, and the increased abundance of Lactobacillus and Bifidobacterium closely associated with health restoration in fecal of mice treated with JMR-01 LP + IP adjuvant 12C6+ irradiation (IR + LP + IP). Similarly, the decreasing nitroreductase activities and increasing short chain fatty acids (SCFAs) concentrations were observed in IR + LP + IP group compared with tumor control group, which further confirmed the changes of gut microbiota. Additionally, we found that the strongest stimulation index of splenocyte (2.47) and the phagocytosis index peritoneal macrophage (3.68) were achieved by LP + IP compared with single live JMR-01 (LP) and inactivated JMR-01 (IP). CONCLUSIONS: JMR-01 LP + IP adjuvant 12C6+ irradiation could mitigate cancer progression by modulating innate immunity as well as intestinal flora.


Asunto(s)
Carcinoma , Neoplasias del Colon , Microbioma Gastrointestinal , Limosilactobacillus reuteri , Animales , Ratones , Lactobacillus , Neoplasias del Colon/radioterapia
11.
Microbiol Spectr ; : e0018923, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37655887

RESUMEN

Gut microbiota and their secreted metabolites have an influence on the initiation and progression of colon cancer. Probiotics are extensively perceived as a potential microbiota-modulation strategy to promote the health of the host, while the effectiveness of preventing colon cancer based on microbiota therapy has not been confirmed, and antitumor mechanisms influenced by microbiota and their metabolites with the intervention of probiotics remain to be further investigated. In vitro, Lactobacillus (JY300-8 and JMR-01) significantly inhibited the proliferation of CT26, HT29, and HCT116 cells. Moreover, we studied the prevention and therapy efficiency of Lactobacillus and its underlying antitumor mechanism through the alteration of gut microbiota and their metabolites regulated by Lactobacillus in colon cancer models in mice. We demonstrated that the pre-administration of Lactobacillus (JY300-8 and JMR-01) for 20 days before establishing tumor models resulted in an 86.21% reduction in tumor formation rate compared to tumor control group. Subsequently, continuous oral administration of living Lactobacillus significantly suppresses tumor growth, and tumor volumes decrease by 65.2%. Microbiome and metabolome analyses reveal that Lactobacillus suppresses colonic tumorigenesis and progression through the modulation of gut microbiota homeostasis and metabolites, including the down-regulation of secondary bile acids, sphingosine 1-phosphate (S1P), and pyrimidine metabolism, as well as the production of anticarcinogenic compounds in tumor-bearing mice. Additionally, metabolome analyses of Lactobacillus (JY300-8 and JMR-01) indicate that living Lactobacillus could reduce the relative abundance of alanine and L-serine to suppress tumor progression by regulating the tumor microenvironment, including down-regulation of pyrimidine metabolism and S1P signaling in cancer. These findings provide a potential prevention strategy and therapeutic target for colon cancer through the intervention of dietary Lactobacillus. IMPORTANCE The modulation of gut microbiota and metabolites has a significant influence on the progression of colon cancer. Our research indicated that the intervention of probiotics is a potentially feasible strategy for preventing colon cancer. We have also revealed the underlying antitumor mechanism through the alteration of gut microbiota and their metabolites, which could lead to broader biomedical impacts on the prevention and therapy of colon cancer with microbiota-based therapy regulated by probiotics.

12.
Biotechnol Biofuels Bioprod ; 15(1): 63, 2022 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-35658919

RESUMEN

BACKGROUND: The major challenge of facing the efficient utilization of biomass is the high cost of cellulolytic enzyme, while the Trichoderma longibrachiatum plays an essential role in the production of industrial enzymes and biomass recycling. RESULTS: The cellulase hyper­producing mutants of LC-M4 and LC-M16 derived from the wild type T. longibrachiatum LC strain through heavy ion mutagenesis exhibited the high-efficiency secretion ability of cellulase and hemicellulose. The FPase activities of LC-M4 (4.51 IU/mL) and LC-M16 (4.16 IU/mL) mutants increased by 46.91% and 35.5% when compared to the LC strain, respectively. Moreover, these two cellulase hyper-producing mutants showed faster growth rate on the cellulosic substrates (Avicel and CMC-Na) plate than that of LC strain. Therefore, an integrative transcriptome and proteome profiling analysis of T. longibrachiatum LC and its cellulase hyper­producing mutant LC-M4 and LC-M16 were employed to reveal the key genes involved in cellulolytic enzymes regulation. It was showed that the transcriptome and proteome profiles changed dramatically between the wild strain and mutant strains. Notably, the overlapped genes obtained from integrative analysis identified that the protein processing in ER involved in protein secretory pathway, starch and sucrose metabolism pathway and N-glycan biosynthesis pathway were significantly changed both in cellulase hyper-producing mutants and thereby improving the enzyme secretion efficiency, which maybe the main reason of cellulase hyper-production in LC-M4 and LC-M16 mutants. In addition, the three DEGs/DEPs (PDI, Sec61, VIP36) related with protein secretion in ER and two DEGs/DEPs (OST, MOGS) related with N-glycan biosynthesis were identified as key candidate genes participating in enzyme protein biosynthesis and secretion. CONCLUSIONS: In this study, a hypothetical secretory model of cellulase protein in filamentous fungi was established on the basis of DEGs/DEPs and key genes identified from the omics analysis, which were of great guidance on the rational genetic engineering and/or breeding of filamentous fungi for improving cellulase production.

13.
ACS Omega ; 7(15): 13354-13361, 2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35474793

RESUMEN

Nowadays, oil pollution of water caused by illegal discharges or accidental events occurs frequently, and the waste of resources and environmental pollution cannot be ignored, so effective oil-water separation methods are needed to cope with such incidents. To solve these problems, this paper investigated an aerogel made from a plant polysaccharide, konjac glucomannan (KGM), supplemented with graphene oxide (GO), to improve the mechanical properties. Finally, a hydrophobic layer was attached to the surface and interior of the aerogel via chemical vapor deposition to improve its selectivity toward oil. Through a series of characterization methods such as infrared, X-ray photoelectron spectroscopy, and X-ray diffraction, it was demonstrated that KGM and GO were successfully cross-linked, resulting in excellent mechanical properties and directional absorption properties on oil. This composite polysaccharide aerogel could absorb oil 48 times its own weight. In addition, due to its strong mechanical properties, the gel can be reused many times, and the maximum recovery rate can be maintained at 96% after 10 cycles. Furthermore, the absorption of oil from water was conducted in a continuous mode, demonstrating the diversity of application scenarios. Generally, the results observed in this work have shown that the KGM aerogels have great potential for applications in oil-water separation.

14.
Crit Rev Anal Chem ; : 1-13, 2022 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36227582

RESUMEN

Alzheimer's disease (AD) is a degenerative disease of the central nervous system. The pathogenesis is still not fully clear. One of the main histopathological manifestations is senile plaques formed by ß-amyloid (Aß) accumulation. Aß is generated from the sequential proteolysis of amyloid precursor protein (APP) by ß-secretase [i.e. ß-site APP cleaving enzyme 1 (BACE1)] and γ-secretase, with a rate-limiting step controlled by BACE1 activity. Therefore, inhibiting BACE1 activity has become a potential therapeutic strategy for AD. The development of reliable detection methods for BACE1 activity plays an important role in early diagnosis of AD and evaluation of the therapeutic effect of new drugs for AD. This article has reviewed the recent advances in BACE1 activity detection techniques. The challenges of applying these analysis techniques to early clinical diagnosis of AD and development trends of the detection techniques have been prospected.

15.
Phys Med ; 99: 1-9, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35576855

RESUMEN

PURPOSE: The calculation ability of the newly-proposed accurate beam model, the double Gaussian-logistic (DG-L) model, was validated in both homogeneous and heterogeneous phantoms to provide helpful information for its future application in clinical carbon-ion treatment planning system (TPS). METHODS: MatRad was used as the new algorithm test platform. Based on Monte Carlo (MC) method, the basic database in matRad was generated, then comparative dosimetric analyses between the single Gaussian (SG), double Gaussian (DG) and DG-L models against the MC recalculations were performed on the treatment plans of a cubic water phantom, a TG119 phantom and a liver patient scenario. Absolute dose differences, dose-volume histograms (DVHs) and global γ-index analyses derived from the treatment plans were evaluated. RESULTS: Calculated with the DG-L model, the deviations of the target dose coverage (D95) for the cubic water phantom, the TG119 phantom and the liver patient case against the MC recalculations could be reduced from -2.5%, -4.6% and -6.4% to -0.3%, -2.0% and -4.5% respectively compared to the SG model, while the γ pass rates (3%/3mm) could be enhanced from 98.0%, 90.6% and 90.1% to 99.8%, 95.7% and 91.6%, respectively. The novel beam model also shows improved performance compared with the DG model, without substantially increasing the computation time. CONCLUSIONS: The DG-L model could effectively improve the dose calculation accuracy and mitigate the delivered dose deficiency in target volumes compared to the SG and DG models. The lateral heterogeneities should be considered for its future implementation in a clinical TPS.


Asunto(s)
Carbono , Planificación de la Radioterapia Asistida por Computador , Algoritmos , Humanos , Método de Montecarlo , Fantasmas de Imagen , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Agua
16.
J Hazard Mater ; 413: 125379, 2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-33930952

RESUMEN

Multifunctional filtration membranes (MFMs), which can both effectively separate oil and selectively remove dyes from polluted aquatic system with robust anti-viscous-oil-fouling capacity, strong chemical/physical resistance, and long cycled stability, are highly required but still a challenge to be realized. Herein, a simple route has been demonstrated to address this challenge aforementioned by decorating both halloysite nanotubes (HNTs) and zwitterionic poly (sulfobetaine methyl methacrylate) (PSBMA) on the microporous polyvinylidene fluoride (PVDF) membrane surface via modified polydopamine (PDA) coating route. The as-prepared membrane exhibits super-hydrophilic/underwater super-oleophobic performance and high water permeation flux (32529 ± 278 L m-2 h-1 at 0.85 bar) to purify the diverse viscous oil-in-water emulsions from oily wastewater accompanying with good cycled stability (the recovery rate of permeate flux is close to 100% after 5 cycles). Moreover, the as-prepared MFM possesses not only strong chemical resistance under wide range of pH value (from 1 to 12) and high saline (NaCl: 10 wt%) environment, but also physical resistance against ultrasound bath for 30 min. Given the presence of HNTs, PDA, and PSBMA, our MFM shows enough active sites to adsorb the soluble dyes and metallic ions in wastewater. These excellent properties endow our MFM with great potential for the remediation of complex wastewater.

17.
RSC Adv ; 10(18): 10873-10878, 2020 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-35492942

RESUMEN

The rational design of electrode materials with high power and energy densities, good operational safety, and long cycle life remains a great challenge for developing advanced battery systems. As a promising electrode material for rechargeable batteries, germanium oxide (GeO2) shows high capacity, but suffers from rapid capacity fading caused by its large volume variation during charge/discharge processes and poor rate performance owing to low intrinsic electronic conductivity. In this study, a novel one-dimensional (1D) carbon/graphene-nanocable-GeO2 nanocomposite (denoted as GeO2/nanocable) is rationally designed and prepared via a facile electrospinning method. Specifically, amorphous carbon and graphene spontaneously construct a nanocable structure, in which graphene acts as the "core" and amorphous carbon as the "shell", and GeO2 nanoparticles are encapsulated in the nanocable. The graphene "core" promises good electrical conductivity while the amorphous carbon "shell" guarantees fast Li ions diffusion. When tested as an anode material for rechargeable lithium ion batteries, the GeO2/nanocable exhibits remarkable Li storage performance, including high reversible capacity (900 mA h g-1), high capacity retention (91% after 100 cycles), and good rate performance (595 mA h g-1 at 5000 mA g-1).

18.
J Colloid Interface Sci ; 569: 307-319, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32126344

RESUMEN

Here we report a novel strategy for controllable preparation monodisperse alginate microcapsules with oil cores, where the thickness of the alginate shells, as well as the number and diversity of the oil cores can be tailored precisely. Monodisperse oil-in-water-in-oil (O/W/O) emulsions are generated in a microfluidic device as templates, which contain alginate molecules and a water-soluble calcium complex in the middle aqueous phase. Alginate microcapsules are produced by gelling O/W/O emulsions in oil solution with acetic acid, where the pH decreasing will trigger the calcium ions being released from calcium complex and cross-linking with alginate molecules. Increasing the alginate molecule concentration in emulsion templates affects little on the thickness of the microcapsules but improves their stability in DI water. The strength of alginate microcapsules can be reinforced by post cross-linking in calcium chloride, polyetherimide, or chitosan solution. Typical payloads, such as thyme essential oil, lavender essential oil and W/O emulsions are encapsulated in alginate microcapsules successfully. Furthermore, tailoring the thickness of the alginate shells, as well as the number and the diversity of the oil cores precisely by manipulation the emulsion templates with microfluidics is also demonstrated. The proposed method shows excellent controllability in designing alginate microcapsules with oil cores.


Asunto(s)
Alginatos/química , Cápsulas/química , Microfluídica/instrumentación , Aceites Volátiles/química , Cloruro de Calcio/química , Quitosano/química , Reactivos de Enlaces Cruzados/química , Emulsiones/química , Diseño de Equipo , Hidrogeles/química , Concentración de Iones de Hidrógeno , Lavandula , Tamaño de la Partícula , Aceites de Plantas/química , Polímeros/química , Propiedades de Superficie , Thymus (Planta)/química , Agua
19.
Nat Commun ; 11(1): 5157, 2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-33057005

RESUMEN

Intense particle beams generated from the interaction of ultrahigh intensity lasers with sample foils provide options in radiography, high-yield neutron sources, high-energy-density-matter generation, and ion fast ignition. An accurate understanding of beam transportation behavior in dense matter is crucial for all these applications. Here we report the experimental evidence on one order of magnitude enhancement of intense laser-accelerated proton beam stopping in dense ionized matter, in comparison with the current-widely used models describing individual ion stopping in matter. Supported by particle-in-cell (PIC) simulations, we attribute the enhancement to the strong decelerating electric field approaching 1 GV/m that can be created by the beam-driven return current. This collective effect plays the dominant role in the stopping of laser-accelerated intense proton beams in dense ionized matter. This finding is essential for the optimum design of ion driven fast ignition and inertial confinement fusion.

20.
J Hazard Mater ; 380: 120865, 2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-31330390

RESUMEN

Water-purification membranes with high water flux, excellent recycling ability, good anti-fouling property, wide range for different oil/water emulsions separation, and strong water-soluble dyes removal ability are highly desirable for water purification but still a challenge to be realized. In this work, we show a simple method to address this challenge, in which halloysite nanotubes (HNTs) have been decorated on the poly (vinylidene fluoride) (PVDF) membrane surface through one-pot method via the aid of KH550 and dopamine. The HNTs@PVDF composite membrane exhibits superhydrophilic and under-water superoleophobic performance. In addition, our membrane can separate wide oil/water emulsions (including surfactant-stabilized and surfactant-free emulsions) from wastewater with high efficiency (>99.65%), outstanding recycle ability with good flux recovery rate (FRR > 95%) and good anti-fouling performance (the underwater oil contact angle (OCA) is 155.8 ±â€¯1.8° with low oil adhesion) and high water flux (7994 ±â€¯150 L m-2 h-1). Interestingly, our membrane also removes different water-soluble dyes (e.g., Congo red, methylene blue, and rhodamine B) from waste water by simply filtering. Those outstanding properties make our membrane hold great potential applications in real-world water purification and environmental protection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA