RESUMEN
AP2S1 is the sigma 2 subunit of adaptor protein 2 (AP2) that is essential for endocytosis. In this study, we investigated the potential role of AP2S1 in intracellular processing of amyloid precursor protein (APP), which contributes to the pathogenesis of Alzheimer disease (AD) by generating the toxic ß-amyloid peptide (Aß). We found that knockdown or overexpression of AP2S1 decreased or increased the protein levels of APP and Aß in cells stably expressing human full-length APP695, respectively. This effect was unrelated to endocytosis but involved lysosomal degradation. Morphological studies revealed that silencing of AP2S1 promoted the translocalization of APP from RAB9-positive late endosomes (LE) to LAMP1-positive lysosomes, which was paralleled by the enhanced LE-lysosome fusion. In support, silencing of vacuolar protein sorting-associated protein 41 (VPS41) that is implicated in LE-lyso fusion prevented AP2S1-mediated regulation of APP degradation and translocalization. In APP/PS1 mice, an animal model of AD, AAV-mediated delivery of AP2S1 shRNA in the hippocampus significantly reduced the protein levels of APP and Aß, with the concomitant APP translocalization, LE-lyso fusion and the improved cognitive functions. Taken together, these data uncover a LE-lyso fusion mechanism in APP degradation and suggest a novel role for AP2S1 in the pathophysiology of AD.
Asunto(s)
Subunidades sigma de Complejo de Proteína Adaptadora , Enfermedad de Alzheimer , Ratones , Humanos , Animales , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Enfermedad de Alzheimer/metabolismo , Endosomas/metabolismo , Lisosomas/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Complejo 2 de Proteína Adaptadora/metabolismo , Subunidades sigma de Complejo de Proteína Adaptadora/metabolismo , Proteínas de Unión al GTP rab/metabolismoRESUMEN
Materials and their interfaces are the core for the development of a large variety of fields, including catalysis, energy storage and conversion. In this case, tip-enhanced Raman spectroscopy (TERS), which combines scanning probe microscopy with plasmon-enhanced Raman spectroscopy, is a powerful technique that can simultaneously obtain the morphological information and chemical fingerprint of target samples at nanometer spatial resolution. It is an ideal tool for the nanoscale chemical characterization of materials and interfaces, correlating their structures with chemical performances. In this review, we begin with a brief introduction to the nanoscale characterization of materials and interfaces, followed by a detailed discussion on the recent theoretical understanding and technical improvements of TERS, including the origin of enhancement, TERS instruments, TERS tips and the application of algorithms in TERS. Subsequently, we list the key experimental issues that need to be addressed to conduct successful TERS measurements. Next, we focus on the recent progress of TERS in the study of various materials, especially the novel low-dimensional materials, and the progresses of TERS in studying different interfaces, including both solid-gas and solid-liquid interfaces. Finally, we provide an outlook on the future developments of TERS in the study of materials and interfaces.
RESUMEN
The development of in situ tumor vaccines offers promising prospects for cancer treatment. Nonetheless, the generation of plenary autologous antigens in vivo and their codelivery to DC cells along with adjuvants remains a significant challenge. Herein, we developed an in situ tumor vaccine using a supramolecular nanoparticle/hydrogel composite (ANPMTO/ALCD) and a deformable nanoadjuvant (PPER848). The ANPMTO/ALCD composite consisted of ß-cyclodextrin-decorated alginate (Alg-g-CD) and MTO-encapsulated adamantane-decorated nanoparticles (ANPMTO) through supramolecular interaction, facilitating the long-term and sustained production of plenary autologous antigens, particularly under a 660 nm laser. Simultaneously, the produced autologous antigens were effectively captured by nanoadjuvant PPER848 and subsequently transported to lymph nodes and DC cells, benefiting from its optimized size and deformability. This in situ tumor vaccine can trigger a robust antitumor immune response and demonstrate significant therapeutic efficacy in inhibiting tumor growth, suppressing tumor metastasis, and preventing postoperative recurrence, offering a straightforward approach to programming in situ tumor vaccines.
Asunto(s)
Adyuvantes Inmunológicos , Vacunas contra el Cáncer , Inmunoterapia , Nanopartículas , Vacunas contra el Cáncer/química , Vacunas contra el Cáncer/administración & dosificación , Vacunas contra el Cáncer/inmunología , Vacunas contra el Cáncer/uso terapéutico , Animales , Ratones , Inmunoterapia/métodos , Nanopartículas/química , Adyuvantes Inmunológicos/química , Adyuvantes Inmunológicos/administración & dosificación , Adyuvantes Inmunológicos/uso terapéutico , Adyuvantes Inmunológicos/farmacología , Hidrogeles/química , Humanos , Línea Celular Tumoral , Células Dendríticas/inmunología , beta-Ciclodextrinas/química , Neoplasias/terapia , Neoplasias/inmunología , Alginatos/química , Adamantano/química , Adamantano/uso terapéuticoRESUMEN
Reference electrode (RE) plays the core role in accurate potential control in electrochemistry. However, nanoresolved electrochemical characterization techniques still suffer from unstable potential control of pseudo-REs, because the commercial RE is too large to be used in the tiny electrochemical cell, and thus only pseudo-RE can be used. Therefore, microsized RE with a stable potential is urgently required to push the nanoresolved electrochemical measurements to a new level of accuracy and precision, but it is quite challenging to reproducibly fabricate such a micro RE until now. Here, we revisited the working mechanism of the metal-junction RE and clearly revealed the role of the ionic path between the metal wire and the borosilicate glass capillary to maintain a stable potential of RE. Based on this understanding, we developed a method to fabricate micro ultrastable-RE, where a reproducible ultrathin ionic path can form by dissolving a sandwiched sacrificial layer between the Pt wire and the capillary for the ion transfer. The potential of this new micro RE was almost the same as that of the commercial Ag/AgCl electrode, while the size is much smaller. Different from commercial REs that must be stored in the inner electrolyte, the new RE could be directly stored in air for more than one year without potential drift. Eventually, we successfully applied the micro RE in the electrochemical tip-enhanced Raman spectroscopy (EC-TERS) measurement to precisely control the potential of the working electrode, which makes it possible to compare the results from different laboratories and techniques to better understand the electrochemical interface at the nanoscale.
RESUMEN
There is growing interest in developing a high-performance self-supervised denoising algorithm for real-time chemical hyperspectral imaging. With a good understanding of the working function of the zero-shot Noise2Noise-based denoising algorithm, we developed a self-supervised Signal2Signal (S2S) algorithm for real-time denoising with a single chemical hyperspectral image. Owing to the accurate distinction and capture of the weak signal from the random fluctuating noise, S2S displays excellent denoising performance, even for the hyperspectral image with a spectral signal-to-noise ratio (SNR) as low as 1.12. Under this condition, both the image clarity and the spatial resolution could be significantly improved and present an almost identical pattern with a spectral SNR of 7.87. The feasibility of real-time denoising during imaging was well demonstrated, and S2S was applied to monitor the photoinduced exfoliation of transition metal dichalcogenide, which is hard to accomplish by confocal Raman spectroscopy. In general, the real-time denoising capability of S2S offers an easy way toward in situ/in vivo/operando research with much improved spatial and temporal resolution. S2S is open-source at https://github.com/3331822w/Signal2signal and will be accessible online at https://ramancloud.xmu.edu.cn/tutorial.
RESUMEN
OBJECTIVE: The aim of this study is to identify a rapid, sensitive, and non-destructive auxiliary approach for postmortem diagnosis of SCD, addressing the challenges faced in forensic practice. METHODS: ATR-FTIR spectroscopy was employed to collect spectral features of blood samples from different cases, combined with pathological changes. Mixed datasets were analyzed using ANN, KNN, RF, and SVM algorithms. Evaluation metrics such as accuracy, precision, recall, F1-score and confusion matrix were used to select the optimal algorithm and construct the postmortem diagnosis model for SCD. RESULTS: A total of 77 cases were collected, including 43 cases in the SCD group and 34 cases in the non-SCD group. A total of 693 spectrogram were obtained. Compared to other algorithms, the SVM algorithm demonstrated the highest accuracy, reaching 95.83% based on spectral biomarkers. Furthermore, by combing spectral biomarkers with age, gender, and cardiac histopathological changes, the accuracy of the SVM model could get 100%. CONCLUSION: Integrating artificial intelligence technology, pathology, and physical chemistry analysis of blood components can serve as an effective auxiliary method for postmortem diagnosis of SCD.
Asunto(s)
Algoritmos , Inteligencia Artificial , Humanos , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Aprendizaje Automático , Biomarcadores , Muerte Súbita Cardíaca , Proteínas de la Ataxia Telangiectasia MutadaRESUMEN
BACKGROUND: The plasma uric acid to albumin ratio (UAR) is considered as a novel indicator for Inflammation. However, the association between UAR and coronary slow flow phenomenon (CSFP) remains unclear. METHODS: A total of 1328 individuals with chronic coronary syndrome (CCS) receiving coronary angiography (CAG) and found no obvious obstructive stenosis (< 40%) were included in this study. 79 individuals developed CSFP and were divided into CSFP group. The 1:2 age-matched patients with normal coronary blood flow were allocated to the control group (n = 158). The clinical characteristics, laboratory parameters including uric acid, albumin ratio, UAR and the angiographic characteristics were compared between the two groups. RESULTS: Patients with CSFP had a higher level of uric acid (392.3 ± 85.3 vs. 273.8 ± 71.5, P < 0.001), UAR (10.7 ± 2.2 vs. 7.2 ± 1.9, P < 0.001), but a lower level of plasma albumin (36.9 ± 4.2 vs. 38.5 ± 3.6, P = 0.003). Moreover, UAR increased as the numbers of vessels involved in CSFP increased. The logistic regression analysis demonstrated that UAR was independent predictors for CSFP. The Receiver operating characteristic (ROC) curve analysis showed that when UAR was more than 7.9, the AUC was 0.883 (95% CI: 0.840-0.927, p < 0.001), with the sensitivity and specificity were 78.2% and 88.2% respectively. CONCLUSION: Combined uric acid with plasma albumin, UAR could serve as an independent predictor for CSFP.
Asunto(s)
Biomarcadores , Angiografía Coronaria , Circulación Coronaria , Fenómeno de no Reflujo , Valor Predictivo de las Pruebas , Albúmina Sérica Humana , Ácido Úrico , Humanos , Masculino , Ácido Úrico/sangre , Femenino , Persona de Mediana Edad , Biomarcadores/sangre , Anciano , Albúmina Sérica Humana/análisis , Factores de Riesgo , Fenómeno de no Reflujo/sangre , Fenómeno de no Reflujo/fisiopatología , Fenómeno de no Reflujo/diagnóstico por imagen , Fenómeno de no Reflujo/diagnóstico , Fenómeno de no Reflujo/etiología , Enfermedad Crónica , Enfermedad de la Arteria Coronaria/sangre , Enfermedad de la Arteria Coronaria/fisiopatología , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Enfermedad de la Arteria Coronaria/diagnóstico , Estudios de Casos y Controles , Estudios Retrospectivos , Vasos Coronarios/fisiopatología , Vasos Coronarios/diagnóstico por imagenRESUMEN
Numerous liver diseases, such as nonalcoholic fatty liver disease, hepatitis, hepatocellular carcinoma, and hepatic ischemia-reperfusion injury, have been increasingly prevalent, posing significant threats to global health. In recent decades, there has been increasing evidence linking the dysregulation of cyclic-GMP-AMP synthase (cGAS)-stimulator of interferon gene (STING)-related immune signaling to liver disorders. Both hyperactivation and deletion of STING can disrupt the immune microenvironment dysfunction, exacerbating liver disorders. Consequently, there has been a surge in research investigating medical agents or mediators targeting cGAS-STING signaling. Interestingly, therapeutic manipulation of the cGAS-STING pathway has yielded inconsistent and even contradictory effects on different liver diseases due to the distinct physiological characteristics of intrahepatic cells that express and respond to STING. In this review, we comprehensively summarize recent advancements in understanding the dual roles of the STING pathway, highlighting that the benefits of targeting STING signaling depend on the specific types of target cells and stages of liver injury. Additionally, we offer a novel perspective on the suitability of STING agonists and antagonists for clinical assessment. In conclusion, STING signaling remains a highly promising therapeutic target, and the development of STING pathway modulators holds great potential for the treatment of liver diseases.
Asunto(s)
Hepatopatías , Proteínas de la Membrana , Nucleotidiltransferasas , Transducción de Señal , Humanos , Nucleotidiltransferasas/metabolismo , Proteínas de la Membrana/metabolismo , Hepatopatías/metabolismo , Hepatopatías/inmunología , AnimalesRESUMEN
Frizzled receptors (FZDs) are key contributors intrinsic to the Wnt signaling pathway, activation of FZDs triggering the Wnt signaling cascade is frequently observed in human tumors and intimately associated with an aggressive carcinoma phenotype. It has been shown that the abnormal expression of FZD receptors contributes to the manifestation of malignant characteristics in human tumors such as enhanced cell proliferation, metastasis, chemotherapy resistance as well as the acquisition of cancer stemness. Given the essential roles of FZD receptors in the Wnt signaling in human tumors, this review aims to consolidate the prevailing knowledge on the specific status of FZD receptors (FZD1-10) and elucidate their respective functions in tumor progression. Furthermore, we delineate the structural basis for binding of FZD and its co-receptors to Wnt, and provide a better theoretical foundation for subsequent studies on related mechanisms. Finally, we describe the existing biological classes of small molecule-based FZD inhibitors in detail in the hope that they can provide useful assistance for design and development of novel drug candidates targeted FZDs.
Asunto(s)
Antineoplásicos , Receptores Frizzled , Neoplasias , Vía de Señalización Wnt , Humanos , Receptores Frizzled/metabolismo , Receptores Frizzled/antagonistas & inhibidores , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Vía de Señalización Wnt/efectos de los fármacos , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Animales , Terapia Molecular Dirigida/métodosRESUMEN
Thermophilic anaerobic digestion (AD) of animal manure offers various environmental benefits but the process requires a microbial community acclimatized to high ammonia. In current study, a lab-scale continuous stirred tank reactor (CSTR) fed with chicken manure was operated under thermophilic condition for 450 days in total. Results showed that the volumetric methane production decreased from 445 to 328 and sharply declined to 153 mL L-1·d-1 with feeding total solid (TS) step increased from 5% to 7.5% and 10%, respectively. While, after a long-term stop feeding for 80 days, highly disturbed reactor was able to recover methane generation to 739 mL L-1·d-1 at feeding TS of 10%. Isotope analysis indicted acetate converted to methane through the syntrophic acetate oxidation and hydrogenotrophic methanogenesis (SAO-HM) pathway increased from 33% to 63% as the concentration of ammonium increased from 2493 to 6258 mg L-1. Significant different in the genome expression of the SAO bacterial from 0.09% to 1.23%, combining with main hydrogenotrophic partners (Methanoculleus spp. and Methanothermobacter spp.) contented of 2.1% and 99.9% during inhibitory and recovery stages, respectively. The highly expressed KEGG pathway in level 3 (enzyme genes) for the Recovery sludge combining with the extraordinary high abundance of genera Halocella sp. suggested that Halocella sp. might be a highly efficient hydrolytic and acidogenic microorganism and enhance the process of SAO during carbon metabolic flow to methane. This report will be a basis for further study of AD studies on high nitrogen content of poultry manure.
Asunto(s)
Amoníaco , Reactores Biológicos , Pollos , Estiércol , Metano , Estiércol/microbiología , Animales , Anaerobiosis , Metano/metabolismo , Amoníaco/metabolismo , Reactores Biológicos/microbiología , Metagenómica/métodosRESUMEN
OBJECTIVES: This study aimed to compare the accuracy of digital complete-arch implant impressions with prefabricated aids using three intraoral scanners (IOSs) and explore the correlation between virtual deviation measurement and physical framework misfit. MATERIALS AND METHODS: Four edentulous maxillary master models with four and six parallel and angular implants were fabricated and scanned by a laboratory scanner as reference scans. Ten scans of each master model were acquired using three IOSs (IOS-T, IOS-M, and IOS-A) with and without prefabricated aids. Trueness and precision of root mean square (RMS) errors were measured. Ten aluminum alloy frameworks were fabricated, and the misfit was measured with a micro-computed tomography scan with one screw tightened. RESULTS: Trueness and precision showed significant improvement when prefabricated aids were used for all three IOSs (p < 0.010). Median (interquartile range) RMS errors of trueness reduced from 67.5 (30.4) to 61.8 (30.3) µm, from 100.6 (35.4) to 45.9 (15.1) µm, and from 52.7 (33.2) to 41.1 (22.5) µm for scanner IOS-T, IOS-M, and IOS-A, respectively (p < 0.010). The precision of IOS-A and IOS-M was significantly better than IOS-T when using prefabricated aid (p < 0.001). RMS errors and the maximum marginal misfit of the framework were significantly correlated (p < 0.001, R2 = 0.845). CONCLUSIONS: With the prefabricated aids, the accuracy of IOSs enhanced significantly in digital complete-arch implant impressions. Three IOSs showed different levels of improvement in accuracy. Virtual RMS errors <62.2 µm could be the clinically acceptable threshold (150 µm) for framework passive fit.
RESUMEN
BACKGROUND Recently, the albumin-to-creatinine ratio (ACR) has been suggested as a valuable biomarker for adverse events in acute myocardial infarction. However, the prognostic value of ACR in very elderly patients (≥80 years) with non-ST-elevation acute coronary syndrome (NSTE-ACS) after percutaneous coronary intervention (PCI) remains unclear. MATERIAL AND METHODS A total of 354 very elderly patients with NSTE-ACS who underwent PCI were included in this study and followed up for 1 year. Patients were divided into 3 groups according to ACR tertiles. Logistic regression analysis proportional hazard model was used to determine the prognostic value of ACR. RESULTS Sixty-two patients (17.5%) with 114 major adverse cardiovascular and cerebrovascular events (MACCEs) were recorded during 1-year follow-up. Patients with lower ACR tended to be older and had a lower serum albumin level and higher uric acid and creatinine levels (P<0.05). Moreover, patients with lower ACR levels had elevated all-cause mortality and MACCEs. Kaplan-Meier analysis suggested that patients with a lower ACR had a significantly lower survival rate free of all-cause mortality and MACCEs. Multivariable logistic regression analysis demonstrated that ACR was an independent predictor of all-cause mortality in these patients. ROC analysis showed that when ACR was ≤42.8, sensitivity and specificity were 75.2% and 80.2%, respectively, and the area under the ROC curve was 0.802 (95% CI: 0.745-0.859; P<0.001). CONCLUSIONS A lower ACR was associated with a higher incidence of all-cause mortality in very elderly patients with NSTE-ACS after PCI. The ACR is a promising indicator for risk stratification and prognostic assessment in these individuals.
Asunto(s)
Síndrome Coronario Agudo , Biomarcadores , Creatinina , Intervención Coronaria Percutánea , Albúmina Sérica , Humanos , Intervención Coronaria Percutánea/efectos adversos , Femenino , Masculino , Creatinina/sangre , Creatinina/metabolismo , Síndrome Coronario Agudo/mortalidad , Síndrome Coronario Agudo/cirugía , Síndrome Coronario Agudo/sangre , Estudios Prospectivos , Anciano de 80 o más Años , Pronóstico , Anciano , Biomarcadores/sangre , Albúmina Sérica/metabolismo , Albúmina Sérica/análisis , Factores de Riesgo , Estimación de Kaplan-MeierRESUMEN
A pair of unidentified atropisomeric dimers, penicisteckins G (1) and H (2), and twelve known compounds (3-16) were isolated from the marine coral-derived fungus Penicillium steckii SCISO41228. Their structures including the absolute configuration were determined by HR-ESI-MS, ECD, 1D-, and 2D-NMR spectra. Compounds 1 and 2 exhibited potent antibacterial activity against most pathogenic strains, especially for MASA and Micrococcus luteus, with MIC values of 4.0 µg·mL-1. In addition, compounds 2 and 3 exhibit potent antioxidant activity with IC50 values of 10.76 and 8.66 µg·mL-1, respectively.
RESUMEN
STATEMENT OF PROBLEM: Conventional impression techniques for complete arch implant-supported fixed dental prostheses (CIFDPs) are technique sensitive. Stereophotogrammetry (SPG) and intraoral scanning (IOS) may offer alternatives to conventional impression making. PURPOSE: The purpose of this in vitro study was to assess the accuracy and passive fit of IOS with prefabricated aids, SPG, and open tray impression (OI) for CIFDPs with different implant distributions. MATERIAL AND METHODS: Three definitive casts with 4 parallel implants (4-PARA), 4 inclined implants (4-INCL), and 6 parallel implants (6-PARA) were fabricated. Three recording techniques were tested: IOS with prefabricated aids, SPG, and OI. The best and the worst scans were selected to fabricate 18 milled aluminum alloy frameworks. The trueness and precision of distance deviation (∆td and ∆pd), angular deviation (∆tθand ∆pθ), root mean square errors (∆tRMS for ∆pRMS), and passive fit score of frameworks were recorded. Two-way ANOVA was applied. RESULTS: SPG showed the best trueness and precision (95%CI of ∆td/∆tθ/∆tRMS, 31 to 39 µm, 0.22 to 0.28 degrees, 20 to 23 µm; 95%CI of ∆pd/∆pθ/∆pRMS, 9 to 11 µm, 0.06 to 0.08 degrees, 8 to 10 µm), followed by OI (61 to 83 µm, 0.33 to 0.48 degrees, 28 to 48 µm; 66 to 81 µm, 0.29 to 0.38 degrees, 32 to 41 µm) and IOS (143 to 193 µm, 0.37 to 0.50 degrees, 81 to 96 µm; 89 to 111 µm, 0.27 to 0.31 degrees, 51 to 62 µm). Tilted implants were associated with increased distance deviation. Increased implant number was associated with improved recording precision. The passive fit of frameworks was negatively correlated with the RMS error, and the correlation coefficient was -0.65 (P=.003). CONCLUSIONS: SPG had the best accuracy. Implant distributions affected implant precision. The RMS error can be used to evaluate the passive fit of frameworks.
Asunto(s)
Técnica de Impresión Dental , Prótesis Dental de Soporte Implantado , Fotogrametría , Fotogrametría/métodos , Humanos , Técnicas In Vitro , Diseño Asistido por Computadora , Implantes DentalesRESUMEN
PURPOSE: Hepatitis B virus (HBV) infection is such a global health problem that hundreds of millions of people are HBV carriers. Current anti-viral agents can inhibit HBV replication, but can hardly eradicate HBV. Cytosine-phosphate-guanosine (CpG) oligodeoxynucleotides (ODNs) are an adjuvant that can activate plasmacytoid dendritic cells (pDCs) and conventional dendritic cells (cDCs) to induce therapeutic immunity for HBV eradication. However, efficient delivery of CpG ODNs into pDCs and cDCs remains a challenge. In this study, we constructed a series of cationic lipid-assisted nanoparticles (CLANs) using different cationic lipids to screen an optimal nanoparticle for delivering CpG ODNs into pDCs and cDCs. METHODS: We constructed different CLANCpG using six cationic lipids and analyzed the cellular uptake of different CLANCpG by pDCs and cDCs in vitro and in vivo, and further analyzed the efficiency of different CLANCpG for activating pDCs and cDCs in both wild type mice and HBV-carrier mice. RESULTS: We found that CLAN fabricated with 1,2-Dioleoyl-3-trimethylammonium propane (DOTAP) showed the highest efficiency for delivering CpG ODNs into pDCs and cDCs, resulting in strong therapeutic immunity in HBV-carrier mice. By using CLANCpG as an immune adjuvant in combination with the injection of recombinant hepatitis B surface antigen (rHBsAg), HBV was successfully eradicated and the chronic liver inflammation in HBV-carrier mice was reduced. CONCLUSION: We screened an optimized CLAN fabricated with DOTAP for efficient delivery of CpG ODNs to pDCs and cDCs, which can act as a therapeutic vaccine adjuvant for treating HBV infection.
Asunto(s)
Hepatitis B , Nanopartículas , Ratones , Animales , Virus de la Hepatitis B , Oligodesoxirribonucleótidos/farmacología , Fosfatos , Citosina , Guanosina , Hepatitis B/tratamiento farmacológico , Ácidos Grasos Monoinsaturados , Adyuvantes Inmunológicos/uso terapéutico , Células DendríticasRESUMEN
PURPOSE: PABPN1 acts as a modulator of poly(A) tail length and alternative polyadenylation. This research was aimed to explore the role of PABPN1 in colorectal cancer (CRC). METHODS: Public databases were performed to analyze expression, location, roles of prognosis and tumor immunity and interaction with RNAs and proteins of PABPN1. To investigate PABPN1 expression in tissues, 78 CRC specimens were collected to conduct IHC, and 30 pairs of frozen CRC and corresponding adjacent normal tissues were used to conduct qRT-PCR and WB. In addition, in vitro experiments were then carried out to identify the role of PABPN1 in CRC. RESULTS: Compared with normal tissues, PABPN1 expression was significant higher in CRC. Its high level predicted poor outcome of CRC. Th1 and Treg had significant negative relationships not only with PABPN1 expression, but also with six molecules interacting with PABPN1, including IFT172, KIAA0895L, RECQL4, WDR6, PABPC1 and NCBP1. In addition, PABPN1 had negative relationships with quite a few immune markers, such as CSF1R, IL-10, CCL2 and so on. In cellular experiments, silencing PABPN1 inhibited proliferation and promoted apoptosis in HCT-116 CRC cells. CONCLUSION: In summary, PABPN1 might become a novel biomarker and correlate with tumor immunity in CRC.
Asunto(s)
Neoplasias Colorrectales , ARN , Humanos , ARN Mensajero , Células HCT116 , Biomarcadores , Neoplasias Colorrectales/metabolismo , Proliferación Celular/genética , Línea Celular Tumoral , Proteína I de Unión a Poli(A) , Proteínas del Citoesqueleto/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismoRESUMEN
1H NMR-guided fractionation led to the isolation of 16 alkaloids from the alkaloidal extract of Stephania longa, including 11 new hasubanan alkaloids (1-11) and five known alkaloids (12-16). Interestingly, compounds 2 and 11 are typically considered protonated tertiary amine compounds, whereas compounds 1 and 10 are regarded as oxidized versions of the corresponding compounds. Their gross structures were determined through an extensive analysis of spectroscopic data (NMR (nuclear magnetic resonance) and HRESIMS (high resolution electrospray ionization mass spectroscopy)), and their absolute configurations were established by comparing their experimental and calculated electronic circular dichroism (ECD) spectra. The new (3) and a known (12) compounds in all isolates displayed stronger antineuroinflammatory effects (IC50 values of 1.8 and 11.1 µM, respectively) than minocycline (IC50 value of 15.5 µM) against NO production on LPS-activated BV2 cells.
Asunto(s)
Alcaloides , Antineoplásicos , Stephania , Stephania/química , Espectroscopía de Protones por Resonancia Magnética , Alcaloides/farmacología , Alcaloides/química , Espectroscopía de Resonancia Magnética , Extractos Vegetales , Estructura MolecularRESUMEN
Guided by Global Natural Products Social molecular networking, 14 new p-terphenyl derivatives, asperterphenyls A-N (1-14), together with 20 known p-terphenyl derivatives (15-34), were obtained from a sponge derived fungus Aspergillus sp. SCSIO41315. Among them, new compounds 2-8 and 15-17 were ten pairs of enantiomers. Comprehensive methods such as chiral-phase HPLC analysis, ECD calculations and X-ray diffraction analysis were applied to determine the absolute configurations. Asperterphenyls B (2) and C (3) represented the first reported natural p-terphenyl derivatives possessing a dicarboxylic acid system. Asperterphenyl A (1) displayed neuraminidase inhibitory activity with an IC50 value of 1.77 ± 0.53 µM and could efficiently inhibit infection of multiple strains of H1N1 with IC50 values from 0.67 ± 0.28 to 1.48 ± 0.60 µM through decreasing viral plaque formation in a dose-dependent manner, which suggested that asperterphenyl A (1) might be exploited as a potential antiviral compound in the pharmaceutical fields.
Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Compuestos de Terfenilo , Neuraminidasa , Hongos , Aspergillus , Cristalografía por Rayos X , Compuestos de Terfenilo/farmacología , Estructura MolecularRESUMEN
Liver fibrosis is a wound-healing process characterized by excess formation of extracellular matrix (ECM) from activated hepatic stellate cells (HSCs). Previous studies show that both EZH2, an epigenetic regulator that catalyzes lysine 27 trimethylation on histone 3 (H3K27me3), and long non-coding RNA H19 are highly correlated with fibrogenesis. In the current study, we investigated the underlying mechanisms. Various models of liver fibrosis including Mdr2-/-, bile duct ligation (BDL) and CCl4 mice were adapted. We found that EZH2 was markedly upregulated and correlated with H19 and fibrotic markers expression in these models. Administration of EZH2 inhibitor 3-DZNeP caused significant protective effects in these models. Furthermore, treatment with 3-DZNeP or GSK126 significantly inhibited primary HSC activation and proliferation in TGF-ß-treated HSCs and H19-overexpreesing LX2 cells in vivo. Using RNA-pull down assay combined with RNA immunoprecipitation, we demonstrated that H19 could directly bind to EZH2. Integrated analysis of RNA-sequencing (RNA-seq) and chromatin immunoprecipitation sequencing (ChIP-seq) further revealed that H19 regulated the reprogramming of EZH2-mediated H3K27me3 profiles, which epigenetically promoted several pathways favoring HSCs activation and proliferation, including epithelial-mesenchymal transition and Wnt/ß-catenin signaling. In conclusion, highly expressed H19 in chronic liver diseases promotes fibrogenesis by reprogramming EZH2-mediated epigenetic regulation of HSCs activation. Targeting the H19-EZH2 interaction may serve as a novel therapeutic approach for liver fibrosis.
Asunto(s)
Proteína Potenciadora del Homólogo Zeste 2 , Histonas , Cirrosis Hepática , ARN Largo no Codificante , Animales , Ratones , Epigénesis Genética , Células Estrelladas Hepáticas/metabolismo , Histonas/metabolismo , Hígado/metabolismo , Cirrosis Hepática/genética , Cirrosis Hepática/metabolismo , Lisina/química , Lisina/metabolismo , Metilación , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismoRESUMEN
OBJECTIVES: The aim of this clinical study was to compare the accuracy of intraoral scan system (IOS) with prefabricated aids and stereophotogrammetry (SPG) compared with open tray implant impression (OI) for complete-arch implant-supported fixed dental prostheses (CIFDP). MATERIALS AND METHODS: Patients needing CIFDP were enrolled in this study. OI, reference standard, IOS with prefabricated aids, and SPG were performed for each patient. Distance and angle deviations between all pairs of abutment analogs, root mean square (RMS) errors between the aligned test and reference model, and chairside time were measured. The effect of inter-abutment distance, jaw (maxilla or mandible), number of implants, and arch length on deviations was analyzed. The mixed effect model was applied to analyze deviations and RMS errors. RESULTS: Fifteen consecutive individuals (6 females and 9 males, 47-77 years old) with 22 arches (9 upper and 13 lower jaws) and 115 implants were included. There was no significant difference in distance deviation comparing SPG and IOS with OI (p > .05). IOS showed a significantly greater angle deviation and RMS errors than SPG (median 0.40° vs. 0.31°, 69 µm vs. 45 µm, p < .01). The inter-abutment distance was negatively correlated with the accuracy of SPG and IOS (p < .05). The chairside time for IOS, SPG, and OI was 10.49 ± 3.50, 14.71 ± 2.86, and 20.20 ± 3.01 min, respectively (p < .01). CONCLUSIONS: The accuracy of SPG and IOS with prefabricated aids was comparable. IOS was the most efficient workflow.