RESUMEN
Microcystin-LR (MC-LR) is a potent hepatotoxin that can cause liver inflammation and injury. However, the mode of action of related inflammatory factors is not fully understood. PfHMGB1 is an inflammatory factor induced at the mRNA level in the liver of juvenile yellow catfish (Pelteobagrus fulvidraco) that were intraperitoneally injected with 50 µg/kg MC-LR. The PfHMGB1 mRNA level was highest in the liver and muscle among 11 tissues examined. The full-length cDNA sequence of PfHMGB1 was cloned and overexpressed in E. coli, and the purified protein rPfHMGB1 demonstrated DNA binding affinity. Endotoxin-free rPfHMGB1 (6-150 µg/mL) also showed dose-dependent hepatotoxicity and induced inflammatory gene expression of primary hepatocytes. PfHMGB1 antibody (anti-PfHMGB1) in vitro reduced MC-LR (30 and 50 µmol/L)-induced hepatotoxicity, suggesting PfHMGB1 is important in the toxic effects of MC-LR. In vivo study showed that MC-LR upregulated PfHMGB1 protein in the liver. The anti-PfHMGB1 blocked its counterpart and reduced ALT/AST activities after MC-LR exposure. Anti-PfHMGB1 partly neutralized MC-LR-induced hepatocyte disorganization, nucleus shrinkage, mitochondria, and rough endoplasmic reticula destruction. These findings suggest that PfHMGB1 promotes MC-LR-induced liver damage in the yellow catfish. HMGB1 may help protect catfish against widespread microcystin pollution.
Asunto(s)
Bagres/fisiología , Hígado/efectos de los fármacos , Toxinas Marinas/toxicidad , Microcistinas/toxicidad , Animales , Bagres/metabolismo , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/metabolismo , ADN Complementario/metabolismo , Escherichia coli/genética , Expresión Génica , Hepatocitos/efectos de los fármacos , Hepatopatías , Proteínas/metabolismo , ARN Mensajero/metabolismoRESUMEN
The cytosolic viral nucleic acid-sensing pathways converge on the protein kinase TANK-binding kinase 1 (TBK1) and the transcription factor interferon (IFN)-regulatory factor 3 (IRF3) to induce type I IFN production and antiviral immune responses. However, the mechanism that triggers the binding of TBK1 and IRF3 after virus infection remains not fully understood. Here, we identified that thousand and one kinase 1 (TAOK1), a Ste20-like kinase, positively regulated virus-induced antiviral immune responses by controlling the TBK1-IRF3 signaling axis. Virus invasion downregulated the expression of TAOK1. TAOK1 deficiency resulted in decreased nucleic acid-mediated type I IFN production and increased susceptibility to virus infection. TAOK1 was constitutively associated with TBK1 independently of the mitochondrial antiviral signaling protein MAVS. TAOK1 promoted IRF3 activation by enhancing TBK1-IRF3 complex formation. TAOK1 enhanced virus-induced type I IFN production in a kinase activity-dependent manner. Viral infection induced TAOK1 to bind with dynein instead of microtubule-associated protein 4 (MAP4), leading to the trafficking of TBK1 to the perinuclear region to bind IRF3. Thus, the depolymerization of microtubule impaired virus-mediated IRF3 activation. Our results revealed that TAOK1 functioned as a new interaction partner and regulated antiviral signaling via trafficking TBK1 along microtubules to bind IRF3. These findings provided novel insights into the function of TAOK1 in the antiviral innate immune response and its related clinical significance.
Asunto(s)
Ácidos Nucleicos , Virosis , Humanos , Transducción de Señal , Fosforilación , Inmunidad Innata , Ácidos Nucleicos/metabolismo , Factor 3 Regulador del Interferón/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismoRESUMEN
Spoiled meat contains many pathogenic bacteria; hence, the intake of spoiled food can lead to various illnesses. To screen the freshness of food, in this study, we devised a ratiometric fluorescence sensor dicyanovinyl coumarin (CMDC) for the determination of cadaverine, an important biomarker for the spoilage of meat. CMDC underwent aza-Michael addition with cadaverine, exhibiting high sensitivity, fast response (50 s), and distinct fluorescence color transition. Test strips fabricated using CMDC showed a noticeable color change from red to green when exposed to cadaverine vapor. The test strips were successfully used to visually monitor the spoilage of beef based on the fluorescence color change. Furthermore, the as-developed test strip coupled with a smartphone provides a simple tool for consumers and suppliers to obtain information about meat quality.