Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Environ Res ; 257: 119326, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38849002

RESUMEN

With the burgeoning growth of the livestock and aquaculture industries, antibiotic residues in treated wastewater have become a serious ecological threat. Traditional biological wastewater treatment technologies-while effective for removing conventional pollutants, such as organic carbon, ammonia and phosphate-struggle to eliminate emerging contaminants, notably antibiotics. Recently, the use of microalgae has emerged as a sustainable and promising approach for the removal of antibiotics due to their non-target status, rapid growth and carbon recovery capabilities. This review aims to analyse the current state of antibiotic removal from wastewater using algae-bacteria symbiosis systems and provide valuable recommendations for the development of livestock/aquaculture wastewater treatment technologies. It (1) summarises the biological removal mechanisms of typical antibiotics, including bioadsorption, bioaccumulation, biodegradation and co-metabolism; (2) discusses the roles of intracellular regulation, involving extracellular polymeric substances, pigments, antioxidant enzyme systems, signalling molecules and metabolic pathways; (3) analyses the role of treatment facilities in facilitating algae-bacteria symbiosis, such as sequencing batch reactors, stabilisation ponds, membrane bioreactors and bioelectrochemical systems; and (4) provides insights into bottlenecks and potential solutions. This review offers valuable information on the mechanisms and strategies involved in the removal of antibiotics from livestock/aquaculture wastewater through the symbiosis of microalgae and bacteria.


Asunto(s)
Antibacterianos , Acuicultura , Ganado , Microalgas , Simbiosis , Aguas Residuales , Contaminantes Químicos del Agua , Acuicultura/métodos , Aguas Residuales/química , Aguas Residuales/microbiología , Microalgas/metabolismo , Animales , Contaminantes Químicos del Agua/metabolismo , Bacterias/metabolismo , Eliminación de Residuos Líquidos/métodos , Biodegradación Ambiental
2.
Ecotoxicol Environ Saf ; 208: 111510, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33120259

RESUMEN

Environment functional materials have been widely used, but whether their effects on the contaminated environment could facilitate phytoremediation is not yet well understood. In this study, starch stabilized nanoscale zerovalent iron (SN), multiwall carbon nanotubes (MW) and tea waste derived biochar (TB) were used to facilitate the phytoremediation of cadmium (Cd) contaminated sediments by Boehmeria nivea (L.) Gaudich. Results showed that 100 mg/kg SN, 500 mg/kg MW and 500 mg/kg TB facilitated phytoremediation, as evidenced by increasing Cd accumulation and/or promoting plant growth. These concentrations of materials increased the reducible fraction of Cd by 9-10% and decreased the oxidizable proportion of Cd by 48-52%, indicating the improvement of Cd bioavailability through converting the oxidizable Cd into reducible form. The activities of urease, phosphatase and catalase, which related to nutrient utilization and oxidative stress alleviation, increased by 20-24%, 25-26%, and 8-9% in the sediments treated with 500 mg/kg MW and 500 mg/kg TB, respectively. In addition, the 16S rRNA gene sequence results showed that these concentrations of materials changed the bacterial diversity. The abundance of Acidobacteria, Actinobacteria, Nitrospirae and Firmicutes were increased by some of the applied materials, which could promote plant growth, change Cd bioavailability and reduce Cd toxicity. These findings indicated that the applied environment functional materials could facilitate the phytoremediation of Cd contaminated environment by changing Cd fractions, sediments properties and bacterial community structure.


Asunto(s)
Biodegradación Ambiental , Cadmio/química , Microbiota , Contaminantes del Suelo/química , Bacterias , Disponibilidad Biológica , Cadmio/análisis , Carbón Orgánico , Hierro/química , Nanotubos de Carbono , ARN Ribosómico 16S , Suelo/química , Contaminantes del Suelo/análisis
3.
J Environ Manage ; 284: 112056, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33548754

RESUMEN

Brassica napus L. (oilseed rape) was grown with daikon and white lupin in a polyvinyl chloride split pot experiment (with no barrier between the compartments or by a nylon mesh barrier (37 µm) to license partial root interaction, or a solid barrier to stop any root interactions) to examine the effect of rhizosphere interaction on the cadmium uptake. The results showed that shoot and root biomasses of oilseed rape were 40.66% and 26.94% less than that of the monocropped treatment (solid barrier) when intercropping with daikon under the rhizosphere complete interaction. However, the intermingling of roots between oilseed rape and white lupin notably enhanced the dry biomass of oilseed rape by 40.23% and decreased with the reduction of root contact. Oilseed rape intercropping with daikon enhanced the shoot Cd concentration of oilseed rape. The shoot Cd concentration (44.8 mg/kg) of oilseed rape when intercropped white lupin under complete rhizosphere interaction were greater than those of other treatments. Additionally, the intermingling of roots played a positive role in the content of citric and malic acids when intercropping with white lupin. In all systems, the BCF values of oilseed rape >5. Therefore, intercropping with white lupin may contribute to higher biomass and increased uptake Cd by oilseed rape. We can toward sustainable positive effects on phytoremediation that based on a better understanding of rhizosphere processes.


Asunto(s)
Brassica napus , Contaminantes del Suelo , Biodegradación Ambiental , Cadmio/análisis , Raíces de Plantas/química , Rizosfera
4.
New Phytol ; 226(5): 1285-1298, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32083760

RESUMEN

Different phosphorus (P)-acquisition strategies may be relevant for species coexistence and plant performance in terrestrial communities on P-deficient soils. However, how interspecific P facilitation functions in natural systems is largely unknown. We investigated the root physiological activities for P mobilization across 19 coexisting plant species in steppe vegetation, and then grew plants with various abilities to mobilize sorbed P in a microcosm in a glasshouse. We show that P facilitation mediated by rhizosphere processes of P-mobilizing species promoted growth and increased P content of neighbors in a species-specific manner. When roots interacted with a facilitating neighbor, Cleistogenes squarrosa and Bromus inermis tended to show greater plasticity of root proliferation or rhizosheath acid phosphatase activity compared with other non-P-mobilizing species. Greater variation in these root traits was strongly correlated with increased performance in the presence of a facilitator. The results also show, for the first time, that P facilitation was an important mechanism underlying a positive complementarity effect. Our study highlights that interspecific P-acquisition facilitation requires that facilitated neighbors exhibit a better match of root traits with a facilitating species. It provides a better understanding of species coexistence in P-limited communities.


Asunto(s)
Fósforo , Suelo , Fenotipo , Raíces de Plantas , Poaceae , Rizosfera
5.
RNA Biol ; 17(3): 381-394, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31868085

RESUMEN

LncRNA ANCR plays important roles in the modulation of epithelial mesenchymal transition (EMT) and tumour metastasis in many tumours. However, the role of ANCR in regulating hepatocellular carcinoma (HCC) metastasis is still not known. The current study aims to investigate the underlying mechanism for tumour oncogenesis of ANCR in HCC metastasis. HCC cell proliferation and migration/invasion were measured by MTT and Transwell assays. Xenograft model was established to determine the effect of ANCR on HCC growth and metastasis. ChIP assay was used to detect the H3 and H4 histone acetylation levels at the ANCR promoter region. RNA pull-down and RIP assay was performed to analyse the relationship between ANCR and heterogeneous nuclear ribonucleoprotein A1 (HNRNPA1). Dual-luciferase reporter gene assay was conducted to determine the interaction between ANCR and miR-140-3p. The results indicated that ANCR was highly expressed in HCC tissues and cells, which promoted the proliferation and migration/invasion of HCC cells. In vivo experiments showed interfering ANCR suppressed the growth and metastasis of HCC. H3/H4 histone acetylation levels at the ANCR promoter region were elevated in HCC tissues and cells, and interfering histone deacetylases 3 (HDAC3) significantly up-regulated ANCR expression. ANCR could bind to HNRNPA1, and promoted the expression of HNRNPA1 through regulating its degradation. In addition, ANCR upregulated the expression of HNRNPA1 through sponging miR-140-3p. Finally, we found that ANCR promoted the EMT and invasion/migration of HCC cells through regulating HNRNPA1. In conclusion, ANCR promoted HCC metastasis by upregulating HNRNPA1, inhibiting HNRNPA1 degradation and sponging miR-140-3p.


Asunto(s)
Carcinoma Hepatocelular/patología , Ribonucleoproteína Nuclear Heterogénea A1/genética , Neoplasias Hepáticas/patología , ARN Largo no Codificante/genética , Anciano , Animales , Carcinoma Hepatocelular/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Transición Epitelial-Mesenquimal/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Ribonucleoproteína Nuclear Heterogénea A1/metabolismo , Humanos , Neoplasias Hepáticas/genética , Masculino , Ratones Desnudos , MicroARNs/genética , Persona de Mediana Edad , Estabilidad Proteica , Regulación hacia Arriba , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Ecotoxicol Environ Saf ; 205: 111162, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32836158

RESUMEN

The mechanisms of intercropping increasing plant biomass, cadmium accumulation, and organic acids secreted in rhizosphere soil are still unclear. Oilseed rape and intercrops were grown in boxes separated either with no barrier between the compartments or by a nylon mesh barrier (37 µm) to license partial root interaction, or a solid barrier to stop any root interactions. Two intercropping systems (oilseed rape-faba bean and oilseed rape-ryegrass) were carried out in soil with Cd content of 5 mg/kg. The intermingling of roots between oilseed rape and faba bean enhanced the biomass of oilseed rape. However, the biomass was negatively affected implying the higher nutrient apportionment to the ryegrass than oilseed rape. Oilseed rape intercropping with both faba bean and ryegrass played a positive role in the shoot Cd concentration of oilseed rape. The intermingling of roots played a positive role in the citric and malic acids when intercropping with faba bean. A remarkable increase in water-soluble Cd and DTPA-Cd content was observed during oilseed rape-faba bean complete root interaction treatment, up to 175.00% and 46.65%, respectively, which compare with the monoculture treatment. In both systems, the translocation factor values were higher for oilseed rape (O-F system) than for the other test plants and were always >1. Thus the Cd removal potential of oilseed rape can be further improved in the future by optimizing agronomic practices and intercropping with faba bean.


Asunto(s)
Brassica napus/crecimiento & desarrollo , Cadmio/metabolismo , Producción de Cultivos/métodos , Lolium/crecimiento & desarrollo , Contaminantes del Suelo/metabolismo , Vicia faba/crecimiento & desarrollo , Bioacumulación , Biomasa , Brassica napus/metabolismo , China , Lolium/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Rizosfera , Suelo/química , Vicia faba/metabolismo
7.
Sensors (Basel) ; 20(21)2020 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-33142931

RESUMEN

Power efficiency is becoming a critical aspect of IoT devices. In this paper, we present a compact object-detection coprocessor with multiple cores for multi-scale/type classification. This coprocessor is capable to process scalable block size for multi-shape detection-window and can be compatible with the frame-image sizes up to 2048 × 2048 for multi-scale classification. A memory-reuse strategy that requires only one dual-port SRAM for storing the feature-vector of one-row blocks is developed to save memory usage. Eventually, a prototype platform is implemented on the Intel DE4 development board with the Stratix IV device. The power consumption of each core in FPGA is only 80.98 mW.

8.
J Environ Manage ; 255: 109885, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-31765948

RESUMEN

The physico-chemical characteristics of N fertilizers remain poorly understood with respect to their use with rape (Brassica napus L.) to remediate Cd-contaminated soil. In this work, eight types of fertilizer (comprising physico-chemical alkaline, neutral, and acidic N fertilizers) were employed to assess the effect of soil remediation via rape at different levels of Cd contamination (0, 5, and 10 mg kg-1 Cd). The results show that the pH of rhizosphere soils was significantly higher under physico-chemical alkaline N fertilizer treatments than under physico-chemical acidic and neutral N fertilizer treatments. The physico-chemical characteristics of N fertilizers affected the rhizosphere soil pH and promoted Cd phytoextraction and accumulation by rape. In the 5 mg kg-1 Cd-contaminated soil, the Cd accumulation and bioconcentration factor value in the shoots and the Cd translocation factor value were highest with the addition of NH4Cl, a physico-chemical acidic N fertilizer. Among the physico-chemical alkaline N fertilizers, Ca(NO3)2 enabled the highest accumulation of Cd in rape shoots when soil was contaminated with 10 mg kg-1 Cd. Thus, administering physico-chemical acidic N fertilizer to soils with lower Cd concentrations provides better remediation effects by rape, whereas physico-chemical alkaline N fertilizers are more effective in soils with higher Cd concentrations. These results show that physico-chemical N fertilizers can be employed to enhance the remediation of Cd-contaminated soil by rape and simultaneously improve the yield of this crop, with implications for environmental health and sustainable agricultural development.


Asunto(s)
Brassica napus , Contaminantes del Suelo , Cadmio , Fertilizantes , Nitrógeno , Suelo
9.
IUBMB Life ; 71(12): 1962-1972, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31418997

RESUMEN

Activation of hepatic stellate cells (HSCs) is a prominent driver of liver fibrogenesis, including alcoholic liver fibrosis (ALF). Furthermore, autophagy contributes to HSCs activation. This study aims to investigate the role and the mechanisms of long noncoding RNA XIST in regulating HSCs autophagy and activation. Human HSC cells (LX-2) were treated with 100 mmol/L ethanol to mimic HSCs activation. The HSCs activation was evaluated by determining cell viability and protein levels of fibrosis markers α-smooth muscle actin (α-SMA) and collagen type 1 α1 (CoL1A1). The autophagy was evaluated by measuring autophagy markers Beclin-1 and LC3-II. The interaction among XIST, miR-29b, and high-mobility group box-1 (HMGB1) were analyzed using luciferase reporter assay, qRT-PCR, and western blot. Lentiviruses targeting sh-XIST (LV-sh-XIST) were injected into ALF model mice via tail vein to elucidate the in vivo role of XIST in ALF injury. XIST was upregulated in ethanol-activated LX-2 cells. Furthermore, XIST served as a competitive endogenous RNA of miR-29b to facilitate HMGB1 expression, and thus enhanced ethanol-induced HSCs autophagy and activation. Further in vivo assay showed that downregulation of XIST by LV-sh-XIST alleviated ALF injury in ALF model mice. Collectively, XIST enhances ethanol-induced HSCs autophagy and activation via miR-29b/HMGB1 axis.


Asunto(s)
Etanol/toxicidad , Proteína HMGB1/genética , Células Estrelladas Hepáticas/patología , MicroARNs/metabolismo , ARN Largo no Codificante/genética , Animales , Autofagia/efectos de los fármacos , Autofagia/genética , Células Cultivadas , Técnicas de Silenciamiento del Gen , Proteína HMGB1/metabolismo , Células Estrelladas Hepáticas/efectos de los fármacos , Células Estrelladas Hepáticas/fisiología , Humanos , Masculino , Ratones Endogámicos C57BL , MicroARNs/genética , ARN Largo no Codificante/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
10.
PeerJ ; 12: e17011, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38436022

RESUMEN

Background: Studies had shown that autophagy was closely related to nonalcoholic fat liver disease (NAFLD), while N6-methyladenosine (m6A) was involved in the regulation of autophagy. However, the mechanism of m6A related autophagy in NAFLD was unclear. Methods: The NAFLD related datasets were gained via the Gene Expression Omnibus (GEO) database, and we also extracted 232 autophagy-related genes (ARGs) and 37 m6A. First, differentially expressed ARGs (DE-ARGs) and differentially expressed m6A (DE-m6A) were screened out by differential expression analysis. DE-ARGs associated with m6A were sifted out by Pearson correlation analysis, and the m6A-ARGs relationship pairs were acquired. Then, autophagic genes in m6A-ARGs pairs were analyzed for machine learning algorithms to obtain feature genes. Further, we validated the relationship between feature genes and NAFLD through quantitative real-time polymerase chain reaction (qRT-PCR), Western blot (WB). Finally, the immuno-infiltration analysis was implement, and we also constructed the TF-mRNA and drug-gene networks. Results: There were 19 DE-ARGs and four DE-m6A between NAFLD and normal samples. The three m6A genes and five AGRs formed the m6A-ARGs relationship pairs. Afterwards, genes obtained from machine learning algorithms were intersected to yield three feature genes (TBK1, RAB1A, and GOPC), which showed significant positive correlation with astrocytes, macrophages, smooth muscle, and showed significant negative correlation with epithelial cells, and endothelial cells. Besides, qRT-PCR and WB indicate that TBK1, RAB1A and GOPC significantly upregulated in NAFLD. Ultimately, we found that the TF-mRNA network included FOXP1-GOPC, ATF1-RAB1A and other relationship pairs, and eight therapeutic agents such as R-406 and adavosertib were predicted based on the TBK1. Conclusion: The study investigated the potential molecular mechanisms of m6A related autophagy feature genes (TBK1, RAB1A, and GOPC) in NAFLD through bioinformatic analyses and animal model validation. However, it is critical to note that these findings, although consequential, demonstrate correlations rather than cause-and-effect relationships. As such, more research is required to fully elucidate the underlying mechanisms and validate the clinical relevance of these feature genes.


Asunto(s)
Adenina/análogos & derivados , Células Endoteliales , Enfermedad del Hígado Graso no Alcohólico , Animales , Enfermedad del Hígado Graso no Alcohólico/genética , Autofagia/genética , ARN Mensajero/genética
11.
Sci Adv ; 10(38): eadp3710, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39292793

RESUMEN

Memristors have emerged as promising devices for enabling efficient multiply-accumulate (MAC) operations in crossbar arrays, crucial for analog in-memory computing (AiMC). However, variations in memristors and associated circuits can affect the accuracy of analog computing. Typically, this is mitigated by on-chip training, which is challenging for memristors with limited endurance. We present a hardware-software codesign using magnetic tunnel junction (MTJ)-based AiMC off-chip calibration that achieves software accuracy without costly on-chip training. Hardware-wise, MTJ devices exhibit ultralow cycle-to-cycle variations, as experimentally evaluated over 1 million mass-produced devices. Software-wise, leveraging this, we propose an off-chip training method to adjust deep neural network parameters, achieving accurate AiMC inference. We validate this approach with MAC operations, showing improved transfer curve linearity and reduced errors. By emulating large-scale neural network models, our codesigned MTJ-based AiMC closely matches software baseline accuracy and outperforms existing off-chip training methods, highlighting MTJ's potential in AI tasks.

12.
Waste Manag ; 176: 20-29, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38246074

RESUMEN

In this study, the speciation, leachability, phytoaccessibility, and environmental risks of heavy metals (Cd, Zn, and Cu) during liquefaction of contaminated peanut straw in ethanol at different temperatures (220, 260, 300, 340, and 380 °C) were comprehensively investigated. The results showed that elevated temperatures facilitated heavy metal accumulation in the biochar. The acid-soluble/exchangeable and reducible fraction percentages of heavy metals were substantially reduced in the biochar after liquefaction as the temperature increased, and the oxidizable fraction became the dominant heavy metal fraction, accounting for 44.14-78.67%. Furthermore, although an excessively high liquefaction temperature (380 °C) increased the residual fraction percentages of Zn and Cu, it was detrimental to Cd immobilization. The acid-soluble/exchangeable Cd in the contaminated peanut straw readily migrates to the bio-oil during liquefaction, with the highest concentration of 1.60 mg/kg at 260 °C liquefaction temperature, whereas Zn and Cu are predominantly bound to the unexchangeable fraction in the bio-oil. Liquefaction inhibited heavy metal leachability and phytoaccessibility in biochar, the lowest extraction rates of Cd, Zn, and Cu were 0.71%, 1.66% and 0.95% by diethylenetriamine pentaacetic acid, respectively. However, the leaching and extraction concentrations increased when the temperature was raised to 380 °C. Additionally, heavy metal risk was reduced from medium and high risk to no and low risk. In summary, liquefaction reduces heavy metal toxicity and the risks associated with contaminated peanut straw, and a temperature range of 300-340 °C for ethanol liquefaction can be considered optimal for stabilizing heavy metals.


Asunto(s)
Metales Pesados , Aceites de Plantas , Polifenoles , Contaminantes del Suelo , Arachis , Cadmio , Contaminantes del Suelo/análisis , Carbón Orgánico , Etanol
13.
J Colloid Interface Sci ; 673: 657-668, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38901356

RESUMEN

The orientation-guidance coupled with in-situ activation methodology is developed to synthesize the N-doped porous carbon (NPC) with well-developed porosity and high specific surface area, using coal pitch as a carbon precursor. The orientation-guidance and activation are dedicated to generating microporous and mesoporous channels, respectively. The in-situ N incorporation into the carbon skeleton is realized along with the formation of porous carbon (PC), ensuring the uniformity of N doping. As an electrode material of supercapacitor, benefiting from the robust hexagon-like building block decorated with micro-mesoporous channels and N doping, NPC electrode affords a significant improvement in capacitive energy-storage performance, achieving a specific capacitance of up to 333F g-1 at 1 A/g, which far exceeds those of PC and activated carbon. Notably, even under high mass loading of 10 mg cm-2, the NPC maintains a satisfactory capacitance of 258F g-1 at 1 A/g. When employed as the anode in Li-ion capacitor (LIC), apart from exhibiting enhanced anode behavior compared to graphite anode, NPC also delivers exceptional cyclability. Furthermore, density functional theory calculations have validated the enhanced electrical conductivity and Li storage ability contributed by N doping, providing a theoretical foundation for the observed improvements in electrochemical performance. A full LIC configured with NPC anode delivers extraordinary Ragone performance and outstanding cyclability. This work also proposes a feasible way to realize the oriented conversion of coal pitch into high-performance electrode materials for electrochemical energy-storage devices.

14.
Biomed Pharmacother ; 171: 116203, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38280330

RESUMEN

Tumor immunotherapy, an innovative anti-cancer therapy, has showcased encouraging outcomes across diverse tumor types. Among these, the PD-1/PD-L1 signaling pathway is a well-known immunological checkpoint, which is significant in the regulation of immune evasion by tumors. Nevertheless, a considerable number of patients develop resistance to anti-PD-1/PD-L1 immunotherapy, rendering it ineffective in the long run. This research focuses on exploring the factors of PD-1/PD-L1-mediated resistance in tumor immunotherapy. Initially, the PD-1/PD-L1 pathway is characterized by its role in facilitating tumor immune evasion, emphasizing its role in autoimmune homeostasis. Next, the primary mechanisms of resistance to PD-1/PD-L1-based immunotherapy are analyzed, including tumor antigen deletion, T cell dysfunction, increased immunosuppressive cells, and alterations in the expression of PD-L1 within tumor cells. The possible ramifications of altered metabolism, microbiota, and DNA methylation on resistance is also described. Finally, possible resolution strategies for dealing with anti-PD-1/PD-L1 immunotherapy resistance are discussed, placing particular emphasis on personalized therapeutic approaches and the exploration of more potent immunotherapy regimens.


Asunto(s)
Neoplasias , Escape del Tumor , Humanos , Receptor de Muerte Celular Programada 1/metabolismo , Antígeno B7-H1/metabolismo , Neoplasias/tratamiento farmacológico , Inmunoterapia , Microambiente Tumoral
15.
Immunobiology ; 228(2): 152323, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36753789

RESUMEN

OBJECTIVE: Preventing the progression of hepatic fibrosis is an important strategy to improve the prognosis of liver disease. The purpose of this study was to investigate the role of sirtuin7 (SIRT7) and high mobility group box 1 (HMGB1) acetylation in the occurrence and development of hepatic fibrosis. MATERIALS AND METHODS: Hepatic fibrosis mice model was induced by CCl4. TGF-ß1 was used to activated quiescent hepatic stellate cell (qHSC) into activated HSC (aHSC). Hematoxylin-eosin evaluated hepatic fibrosis in vivo, and the distribution of α-smooth muscle actin (α-SMA) or HMGB1 was detected by immunohistochemistry or immunofluorescence. The expressions of SIRT7, autophagy related proteins, and HSC activation-related proteins were detected by Western blot. Immunoprecipitation detected the acetylation level of HMGB1. Lysine mutants of HMGB1 were constructed in vitro to explore the acetylation sites of HMGB1. RESULTS: Hepatocyte autophagy and activation levels were enhanced in CCl4 group or aHSC group, and the acetylation level of HMGB1 was increased. Nuclear transfer of HMGB1 occurred in aHSC, and HMGB1was mainly distributed in cytoplasm. The expression of SIRT7 in CCl4 group or aHSC group was most significantly decreased, and knockdown of SIRT7 leads to increased levels of HSCs autophagy and activation. Overexpression of SIRT7 or interference of HMGB1 alone in aHSC can reduce the level of autophagy and activation of aHSC. However, continued overexpression of SIRT7 in shHMGB1-aHSC could not reduce the autophagy and activation levels of aHSC. Among the 11 Flag-HMGB1 mutants, the acetylation level of K86R-Flag-HMGB1 was the lowest. The acetylation level of K86R-Flag-HMGB1 did not change due to SIRT7 downregulation. CONCLUSION: This study proved that SIRT7 can directly target the K86R site of HMGB1 and participate in regulating the expression and distribution of HMGB1, thus affecting the autophagy and activation level of HSCs.


Asunto(s)
Proteína HMGB1 , Sirtuinas , Ratones , Animales , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , Proteína HMGB1/metabolismo , Acetilación , Cirrosis Hepática , Autofagia , Sirtuinas/efectos adversos , Sirtuinas/metabolismo
16.
Front Immunol ; 14: 1213629, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37441069

RESUMEN

Dendritic cells (DCs), a class of professional antigen-presenting cells, are considered key factors in the initiation and maintenance of anti-tumor immunity due to their powerful ability to present antigen and stimulate T-cell responses. The important role of DCs in controlling tumor growth and mediating potent anti-tumor immunity has been demonstrated in various cancer models. Accordingly, the infiltration of stimulatory DCs positively correlates with the prognosis and response to immunotherapy in a variety of solid tumors. However, accumulating evidence indicates that DCs exhibit a significantly dysfunctional state, ultimately leading to an impaired anti-tumor immune response due to the effects of the immunosuppressive tumor microenvironment (TME). Currently, numerous preclinical and clinical studies are exploring immunotherapeutic strategies to better control tumors by restoring or enhancing the activity of DCs in tumors, such as the popular DC-based vaccines. In this review, an overview of the role of DCs in controlling tumor progression is provided, followed by a summary of the current advances in understanding the mechanisms by which the TME affects the normal function of DCs, and concluding with a brief discussion of current strategies for DC-based tumor immunotherapy.


Asunto(s)
Células Dendríticas , Neoplasias , Humanos , Microambiente Tumoral , Linfocitos T , Neoplasias/terapia , Inmunidad
17.
Nat Commun ; 14(1): 3019, 2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37230970

RESUMEN

Synthetic high-performance fibers present excellent mechanical properties and promising applications in the impact protection field. However, fabricating fibers with high strength and high toughness is challenging due to their intrinsic conflicts. Herein, we report a simultaneous improvement in strength, toughness, and modulus of heterocyclic aramid fibers by 26%, 66%, and 13%, respectively, via polymerizing a small amount (0.05 wt%) of short aminated single-walled carbon nanotubes (SWNTs), achieving a tensile strength of 6.44 ± 0.11 GPa, a toughness of 184.0 ± 11.4 MJ m-3, and a Young's modulus of 141.7 ± 4.0 GPa. Mechanism analyses reveal that short aminated SWNTs improve the crystallinity and orientation degree by affecting the structures of heterocyclic aramid chains around SWNTs, and in situ polymerization increases the interfacial interaction therein to promote stress transfer and suppress strain localization. These two effects account for the simultaneous improvement in strength and toughness.

18.
Lancet Reg Health West Pac ; 39: 100826, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37927997

RESUMEN

Background: Tobacco cessation is proven to be the most effective and cost-effective strategy for smokers to reduce their risk of smoking-related disease and premature death. Providing effective, efficient, safe, and patient-centred tobacco cessation treatment to reach those who need them is a significant challenge. To date, only a few nationwide studies in China have assessed the overall clinical care practice and treatment outcome of tobacco cessation. Methods: This a prospective, nationwide, multicenter, cohort study covering all Eastern China, Northwest China, Central China, North China, Southwest China, Northeast China, and South China. Participants who were current smokers aged 18-85 years attending clinic for smoking cessation were included. All the participants were treated with 3-month cessation treatment and followed up for 3 months. Data were collected prospectively using online system. The primary outcome was 7-day point abstinence rate at 24 weeks, validated biochemically by an expired carbon monoxide level of less than 10 ppm. The participants lost to follow-up or not providing validation were included as non-abstainers. Findings: A representative sample of 3557 participants were recruited and 2943 participants were included into this analysis. These participants had mean age of 53.05 years, and 94.8% were males, with 75.8% showing symptoms of tobacco dependence. A total of 965 (32.8%) participants were treated with Bupropion + behavioural counselling, followed by 935 (31.8%) with behavioural counselling, 778 (26.4%) with Varenicline + behavioural counselling, 135 (4.6%) with alternative treatments + behavioural counselling, and 130 (4.4%) with nicotine replacement therapy (NRT) + behavioural counselling. After 3-month treatment and 3-month follow-up, 21.74% of the participants quit smoking at 24 weeks. In the multivariable-adjusted analyses, quitting smoking was significantly associated with female, higher socioeconomic status, poor health condition, different treatment received, and less smoking intensity. The tobacco cessation treatment varied widely across different areas of China. In particular, the areas with higher usage of cessation medication were associated with better cessation treatment outcome. Interpretation: The CNTCCS is the first large-scale nationwide cohort study of smoking cessation in China. Rich data collected from this prospective cohort study provided the opportunity to evaluate the clinical practice of tobacco cessation treatment in China. Funding: Chinese Academy of Medical Sciences (CAMS) Initiative for Innovative Medicine (CAMS 2021-I2M-1-010), Heilongjiang Provincial Science and Technology Key Program (2022ZXJ03C02), and National Key R&D Program of China (grant no. 2017YFC1309400).

19.
GM Crops Food ; 13(1): 86-96, 2022 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-35506348

RESUMEN

China has been investing heavily in biotechnology to increase agricultural productivity. While a number of Chinese developed GM crops have cleared the required scientific hurdles - some more than a decade ago - commercialization has not been approved. The regulatory regime for GMOs in China is relatively less well understood than that of the US or the EU. This paper provides a systematic overview of China's regulatory regime, R&D investment and delayed commercialization decisions on biotechnology over the last 40 years and draws some conclusions regarding the likelihood of the commercialization for major GM crops in the future.


Asunto(s)
Biotecnología , Productos Agrícolas , Agricultura , China , Productos Agrícolas/genética , Plantas Modificadas Genéticamente/genética
20.
Sci Rep ; 12(1): 4388, 2022 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-35288602

RESUMEN

Slaked lime has been used to remediate contaminated agricultural soils as an in situ chemical immobilization amendment for a long time. However, the effects of slaked lime on peanut and soil cadmium (Cd) levels remain poorly understood with respect to remediating Cd-contaminated soil. In this study, six rates of slaked lime (e.g., 0, 300, 600, 900, 1200 and 1500 kg ha-1) were applied to evaluate the effects of slaked lime treatments on soil pH and the growth, Cd accumulation and physiology characteristics of peanut, which were in Cd-contaminated soil, and 0 kg ha-1 was taken as the control. The results indicated that slaked lime application significantly increased soil pH and reduced total Cd contents in peanut tissues at all growth stages. As the rates of slaked lime were increased, kernel biomass increased in the maturity stage, which increased peanut yields. The irregular variations in catalase, peroxidase, and superoxide dismutase activities and chlorophyll and malondialdehyde contents that were observed at all growth stages may be due to the interactions among soil pH, Ca nutrients and Cd, etc. In summary, slaked lime is suitable as an in situ chemical immobilization amendment to increase Cd immobilization and peanut yields in Cd-contaminated soil.


Asunto(s)
Cadmio , Contaminantes del Suelo , Antioxidantes , Arachis/química , Cadmio/análisis , Compuestos de Calcio/química , Compuestos de Calcio/farmacología , Óxidos/química , Suelo/química , Contaminantes del Suelo/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA